Browsing by Author "Altwegg, Res"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemCounting chirps : acoustic monitoring of cryptic frogs(Wiley, 2016) Measey, G. John; Stevenson, Ben C.; Scott, Tanya; Altwegg, Res; Borchers, David L.This study explores the utility of monitoring using acoustic spatially explicit capture– recapture (aSCR) with time of arrival (ToA) and signal strength (SS) as a quantitative monitoring technique to measure call density of a threatened but visually cryptic anuran, the Cape peninsula moss frog Arthroleptella lightfooti.
- ItemExtreme climate-induced life-history plasticity in an amphibian(University of Chicago Press, 2018) Becker, François S.; Tolley, Krystal A. T.; Measey, G. John; Altwegg, ResAge-specific survival and reproduction are closely linked to fitness and therefore subject to strong selection that typically limits their variability within species. Furthermore, adult survival rate in vertebrate populations is typically less variable over time than other life-history traits, such as fecundity or recruitment. Hence, adult survival is often conserved within a population over time, compared to the variation in survival found across taxa. In stark contrast to this general pattern, we report evidence of extreme short-term variation of adult survival in Rose’s mountain toadlet (Capensibufo rosei), which is apparently climate induced. Over 7 years, annual survival rate varied between 0.04 and 0.92, and 94% of this variation was explained by variation in breeding-season rainfall. Preliminary results suggest that this variation reflects adaptive life-history plasticity to a degree thus far unrecorded for any vertebrate, rather than direct rainfall-induced mortality. In wet years, these toads appeared to achieve increased reproduction at the expense of their own survival, whereas in dry years, their survival increased at the expense of reproduction. Such environmentally induced plasticity may reflect a diversity of life-history strategies not previously appreciated among vertebrates.
- ItemFire‑mediated disruptive selection can explain the reseeder–resprouter dichotomy in Mediterranean‑type vegetation(Springer, 2014) Altwegg, Res; De Klerk, Helen Margaret; Midgley, Guy F.Crown fire is a key selective pressure in Mediterranean-type plant communities. Adaptive responses to fire regimes involve trade-offs between investment for persistence (fire survival and resprouting) and reproduction (fire mortality, fast growth to reproductive maturity, and reseeding) as investments that enhance adult survival lower growth and reproductive rates. Southern hemisphere Mediterranean-type ecosystems are dominated by species with either endogenous regeneration from adult resprouting or fire-triggered seedling recruitment. Specifically, on nutrient-poor soils, these are either resprouting or reseeding life histories, with few intermediate forms, despite the fact that the transition between strategies is evolutionarily labile. How did this strong dichotomy evolve? We address this question by developing a stochastic demographic model to assess determinants of relative fitness of reseeders, resprouters and hypothetical intermediate forms. The model was parameterised using published demographic data from South African protea species and run over various relevant fire regime parameters facets. At intermediate fire return intervals, trade-offs between investment in growth versus fire resilience can cause fitness to peak at either of the extremes of the reseeder–resprouter continuum, especially when assuming realistic non-linear shapes for these trade-offs. Under these circumstances, the fitness landscape exhibits a saddle which could lead to disruptive selection. The fitness gradient between the peaks was shallow, which may explain why this life-history trait is phylogenetically labile. Resprouters had maximum fitness at shorter fire-return intervals than reseeders. The model suggests that a strong dichotomy in fire survival strategy depends on a non-linear trade-off between growth and fire persistence traits.
- ItemFrog eat frog : exploring variables influencing anurophagy(PeerJ, 2015) Measey, G. John; Vimercati, Giovanni; De Villiers, F. Andre; Mokhatla, Mohlamatsane M.; Davies, Sarah J.; Edwards, Shelley; Altwegg, ResBackground - Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods - We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results - Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions - We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species.
- ItemMechanistic reconciliation of community and invasion ecology(Ecological Society of America, 2021-02) Latombe, Guillaume; Richardson, David M.; McGeoch, Melodie A.; Altwegg, Res; Catford, Jane A.; Chase, Jonathan M.; Courchamp, Franck; Esler, , Karen J.; Jeschke, Jonathan M.; Landi, Pietro; Measey, John; Midgley, Guy F.; Minoarivelo, Henintsoa O.; Rodger, James G.; Hui, CangCommunity and invasion ecology have mostly grown independently. There is substantial overlap in the processes captured by different models in the two fields, and various frameworks have been developed to reduce this redundancy and synthesize information content. Despite broad recognition that community and invasion ecology are interconnected, a process‐based framework synthesizing models across these two fields is lacking. Here we review 65 representative community and invasion models and propose a common framework articulated around six processes (dispersal, drift, abiotic interactions, within‐guild interactions, cross‐guild interactions, and genetic changes). The framework is designed to synthesize the content of the two fields, provide a general perspective on their development, and enable their comparison. The application of this framework and of a novel method based on network theory reveals some lack of coherence between the two fields, despite some historical similarities. Community ecology models are characterized by combinations of multiple processes, likely reflecting the search for an overarching theory to explain community assembly and structure, drawing predominantly on interaction processes, but also accounting largely for the other processes. In contrast, most models in invasion ecology invoke fewer processes and focus more on interactions between introduced species and their novel biotic and abiotic environment. The historical dominance of interaction processes and their independent developments in the two fields is also reflected in the lower level of coherence for models involving interactions, compared to models involving dispersal, drift, and genetic changes. It appears that community ecology, with a longer history than invasion ecology, has transitioned from the search for single explanations for patterns observed in nature to investigate how processes may interact mechanistically, thereby generating and testing hypotheses. Our framework paves the way for a similar transition in invasion ecology, to better capture the dynamics of multiple alien species introduced in complex communities. Reciprocally, applying insights from invasion to community ecology will help us understand and predict the future of ecological communities in the Anthropocene, in which human activities are weakening species’ natural boundaries. Ultimately, the successful integration of the two fields could advance a predictive ecology that is urgently required in a rapidly changing world.
- ItemSurvival and abundance of Cape dwarf chameleons, Bradypodion pumilum, inhabiting a transformed, semi-urban wetland(British Herpetological Society, 2013) Katz, Eric M.; Tolley, Krystal A.; Altwegg, ResThe Cape dwarf chameleon, Bradypodion pumilum, inhabits urban areas within a critically endangered ecosystem. In this study, temporal dynamics of local demographic parameters were investigated for a population of B. pumilum inhabiting a 0.56 hectare patch of transformed habitat bordering an urban area in Noordhoek, South Africa. Robust Design (RD) capture-mark-recapture (CMR) models were used to estimate population demographics because of their ability to distinguish and account for temporary unavailability of individuals versus being captured. RD models were fit to one year of CMR data to examine adult survival and local abundance. Additionally, multi-strata (MS) models were used to analyze chameleon growth rate and size-specific survival. The results indicate the site supports a fluctuating abundance of individuals, ranging from ca. 25–91 adult chameleons. Larger chameleons showed higher 30-day and annual survival rates than smaller individuals regardless of sex (30-day range: 0.56–0.84; annual range: 9.51x10-5–0.12). Chameleons that survived to the beginning of each age class spent on average 1.1 months at 40–50 mm; 1.7 months at 50–60 mm; 2.5 months at 60–70 mm; and 6.3 months at >70 mm. Despite seasonality in the environment, there was no significant seasonal variation in chameleon survival. These findings indicate chameleon population dynamics characterized by local population fluctuations despite predominately constant, low survival; our findings suggest reproduction drives population fluctuations. Bradypodion pumilum's high fecundity and low survival should allow for their persistence in disturbed habitats assuming they are able to take advantage of suitable conditions. Alternatively, these biological traits may make B. pumilum prone to large demographic fluctuations, yielding a high risk of local extinction. This study provides temporal data on local population dynamics and survival for a potentially threatened reptile species inhabiting altered habitats.