Masters Degrees (Soil Science)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Soil Science) by Author "Awkes, Meryl Mandy"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemComparison of calcium ameliorants and coal ash in alleviating the effects of subsoil acidity on maize root development near Middelburg, Mpumalanga(Stellenbosch : University of Stellenbosch, 2010-03) Awkes, Meryl Mandy; Hoffman, J. E.; Fey, M. V.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Soil Science.ENGLISH ABSTRACT: Acidic soils are a major limitation to agriculture worldwide. The Highveld in South Africa has many acidic soils and several coal burning power stations. These coal burning power stations generate alkaline fly ash as a waste material and it can thus serve as an ameliorant to the surrounding acidic soils. A two year field trial was undertaken to compare fly ash and other calcium ameliorants to alleviate the effects of subsoil acidity on maize root development. The field trail was established on Beestepan Farm in Middelburg, Mpumalanga. It consisted of 24 treatments, each done in triplicate, rendering a total of 72 plots. The materials used were unweathered fly ash (CCE 10%), calcitic lime (CCE 77%) and Calmasil (a calcium silicate slag, CCE 99%). Calmasil and lime were applied at rates of 0-, 1-, 2-, and 4t/ha, while fly ash was applied at 0-, 7-, 14- and 28t/ha. These treatments were applied to an acidic sandy loam soils in the presence or absence of 4t/ha gypsum. Beans were harvested after the first season following the application of amendments and maize was harvested in the second season. Yield, root length, leaf and soil analysis was undertaken to evaluate the effectiveness of the different liming materials. The effect of the treatments on fertility indicators such as pH, exchangeable acidity, Ca and Mg was investigated. Results indicated that all liming materials increased topsoil pH, soil nutrient and base status and crop yield in both seasons. Calmasil was the superior liming material in all respects. Fly ash increased pH minimally but reduced exchangeable acidity by 12% and 24% in the first and second seasons, respectively. Fly ash increased topsoil Ca levels from 74 to 102mg/kg and subsoil Ca from 61 to 114mg/kg. Topsoil Mg levels were increased from 7.3 to 16mg/kg and subsoil Mg was increased from 9.4 to 13mg/kg. The consequence of these increased nutrients was the subsequent increased foliar uptake of Ca and Mg. The substantial increase in bean yield from 958 to 1724kg/ha and maize yield from 5569 to 7553kg/ha following ash application compared well with results obtained from lime and Calmasil application. This may partly be due to the presence of additional plant nutrients such as P and K in the fly ash. Dissolution behaviour of fly ash indicates that upon exposure to acidity the release of micronutrients like B, Co, Cu, Fe, Mo, Mn and Zn occurs, and preliminary data shows that there is comparatively little concern regarding heavy metal accumulation in crops. The application of 4t/ha gypsum had no effect on pH and decreased subsoil acidity only minimally however, subsoil Ca status and acid saturation levels were considerably improved which would possibly account for the overall beneficial effect on maize yield, increasing by an average of 1071kg/ha. It was not possible to make any conclusions relating treatment application and maize root length. This field trial has confirmed that fly ash can be used as an efficient liming material and that it compares well with traditional liming materials.