Doctoral Degrees (Chemistry and Polymer Science)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Chemistry and Polymer Science) by Author "Abduallah, Abduelmaged Basher Elmabrok"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSynthesis and morphological characterization of segmented and branched polydimethylsiloxane-polyester copolymers(Stellenbosch : University of Stellenbosch, 2010-03) Abduallah, Abduelmaged Basher Elmabrok; Mallon, Peter; University of Stellenbosch. Faculty of Science. Dept. of Chemistry and Polymer Science.ENGLISH ABSTRACT: Polydimethylsiloxane–polyester (PDMS-PES) copolymers produce materials which have enhanced properties and take advantage of the unique properties of the two very dissimilar components. The dissimilar nature of the components results in these types of materials typically having complex morphologies in the solid state as a result of phase segregation. When the polyester component is crystallisable, an even richer variation in morphology can be expected. The chain structure of the copolymer in terms of the distribution of the various segments along the chain and the variation in the composition also has a dramatic impact on the solid state morphology. In this study, two different types of polyesters were used to synthesise five series of PDMS-PES segmented copolymers and one series of PDMS-PES branched copolymer. The two polyester segments selected were polybutyleneadipate (PBA) and polybuthylenecyclohexancarboxylate (PBCH). The copolymers were synthesised via polycondensation in the melt state. Insights on many variations in the PDMS-PES copolymer synthesis are given. The copolymer series synthesized gave systematic series where the influence of the polyester type, chain architecture, bulk composition, block length, crystallinity and processing condition on the bulk and surface morphology could be studied. The remarkable variations in the properties of the copolymer were attributed to the differences in the copolymers morphology in terms of the microphase segregation, crystallization and the free volume properties. These variations were also found to alter the nature of the surface compositions and the related surface properties. Multiphase morphology exhibited in all the PDMS-PES copolymers and the type of morphology observed was dependent on PDMS contents, PDMS segment length and the degree of branching. Three types of morphology were observed: spherical micro-domains of PDMS in a matrix of PES, bicontinuous double diamond type morphology, and spherical micro-domains of PES in a matrix of PDMS. Spherical domains of the PDMS were also observed for low PDMS content copolymers between the crystalline polyester lamellae. The complexity of the PDMS-PBCH copolymer morphology was further investigated, using an extensive set of experimental data that has been drawn together with using positron annihilation lifetime spectroscopy (PALS) and developing and applying a new type of hyphenated technique between fractionation (chromatography) and microscopy (atomic force microscopy) techniques. The outcome has provided a unique perspective regarding the complexity of the PDMS-PBCH copolymer morphology, which is believed to provide basis for a theoretical structure-properties relationship in this fascinating class of thermoplastic material.