Doctoral Degrees (Botany and Zoology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Botany and Zoology) by Author "Blanchard, Ryan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemAn assessment of the potential biodiversity impacts from biofuel production in South Africa(Stellenbosch : Stellenbosch University, 2014-12) Blanchard, Ryan; Richardson, David M.; O'Farrell, Patrick J.; Stellenbosch University. Faculty of Science. Dept. of Botany and Zoology.ENGLISH ABSTRACT: Biofuels are being promoted as a global necessity to meet climate change targets through the replacement of fossil fuels. Many countries have identified biofuels as a potential mechanism to meet these challenges, with policy directives driving biofuel production. The South African government has proposed that biofuels form part of the country’s future renewable energy and has proposed a draft biofuel strategy. This study aims to investigate appropriate approaches to determine potential biodiversity impacts from biofuel production. Since biofuels are not currently grown to any large extent in South Africa, impact was modelled using future scenarios of converting available land within the Eastern Cape Province of South Africa. Suitable species were identified using the species distribution modelling programme MaxEnt. Some of the proposed biofuel crops were considered as invasive (i.e. they spread from sites where they are cultivated) or are very likely to be invasive in South Africa. This study also highlighted the considerable overlap between suitable growing areas and areas considered important for future biodiversity conservation. The biodiversity intactness index (BII), a broad based biodiversity indicator, was used to assess the biodiversity implications of transforming available land to biofuels. The BII indicates losses of biodiversity between 17.6% and 42.1% for the land use scenarios identified. An important finding was that excluding important biodiversity areas that occur outside of protected areas can reduce biodiversity losses by as much as 13% and maintain an overall intactness of ~70%. Currently the BII does not account for fragmentation or landscape configuration. This was addressed by developing a revised biodiversity intactness index (R-BII) which included the effect of patch-size and habitat fragmentation on biodiversity intactness. This study found that although the original BII reported on the biodiversity trends of large-scale shifts in land-use across multiple scales it could not detect changes in landscape configuration which was reflected by the R-BII. Land-use change can impact on ecosystem processes that underpin the provisioning of ecosystem services by changing the combinations of species and the plant functional traits within communities. The impacts of cultivating potential biofuel species (Acacia mearnsii, Sorghum halepense and Eucalyptus species) were investigated using a plant functional traits approach. These species were shown to affect the leaf nitrogen content, leaf phosphorous content and leaf dry matter content associated with important ecosystem functions within an ecosystem service hotspot in the Eastern Cape. A decline in functional diversity was reported for all transformed land-uses by as much as ~40%. These shifts may be used to identify potential changes to ecosystem services associated with natural vegetation. The methods used in this thesis highlight the overall relevance of this work and its importance to minimising biodiversity resulting from biofuel production. Some of the key findings address resolving spatial conflict, using biodiversity indicators, assessing impacts of potential invasive species and planning for ecosystem services. New drivers of change to land-use, such as biofuel production, are a major challenge to conservation biologists and planners and the insights derived in from this study can be successfully applied to guide biofuel production.