Doctoral Degrees (Logistics)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Logistics) by Author "Ortmann, Frank"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemHeuristics for offline rectangular packing problems(Stellenbosch : University of Stellenbosch, 2010-03) Ortmann, Frank; Van Vuuren, J. H.; University of Stellenbosch. Faculty of Economic and Management Sciences. Dept. of Logistics.ENGLISH ABSTRACT: Packing problems are common in industry and there is a large body of literature on the subject. Two packing problems are considered in this dissertation: the strip packing problem and the bin packing problem. The aim in both problems is to pack a speci ed set of small items, the dimensions of which are all known prior to packing (hence giving rise to an o ine problem), into larger objects, called bins. The strip packing problem requires packing these items into a single bin, one dimension of which is unbounded (the bin is therefore referred to as a strip). In two dimensions the width of the strip is typically speci ed and the aim is to pack all the items into the strip, without overlapping, so that the resulting packing height is a minimum. The bin packing problem, on the other hand, is the problem of packing the items into a speci ed set of bins (all of whose dimensions are bounded) so that the wasted space remaining in the bins (which contain items) is a minimum. The bins may all have the same dimensions (in which case the problem is known as the single bin size bin packing problem), or may have di erent dimensions, in which case the problem is called the multiple bin size bin packing problem (MBSBPP). In two dimensions the wasted space is the sum total of areas of the bins (containing items) not covered by items. Many solution methodologies have been developed for above-mentioned problems, but the scope of the solution methodologies considered in this dissertation is restricted to heuristics. Packing heuristics follow a xed set of rules to pack items in such a manner as to nd good, feasible (but not necessarily optimal) solutions to the strip and bin packing problems within as short a time span as possible. Three types of heuristics are considered in this dissertation: (i) those that pack items into levels (the heights of which are determined by the heights of the tallest items in these levels) in such a manner that all items are packed along the bottom of the level, (ii) those that pack items into levels in such a manner that items may be packed anywhere between the horizontal boundaries that de ne the levels, and (iii) those heuristics that do not restrict the packing of items to levels. These three classes of heuristics are known as level algorithms, pseudolevel algorithms and plane algorithms, respectively. A computational approach is adopted in this dissertation in order to evaluate the performances of 218 new heuristics for the strip packing problem in relation to 34 known heuristics from the literature with respect to a set of 1 170 benchmark problem instances. It is found that the new level-packing heuristics do not yield signi cantly better solutions than the known heuristics, but several of the newly proposed pseudolevel heuristics do yield signi cantly better results than the best of the known pseudolevel heuristics in terms of both packing densities achieved and computation times expended. During the evaluation of the plane algorithms two classes of heuristics were identi ed for packing problems, namely sorting-dependent and sortingindependent algorithms. Two new sorting techniques are proposed for the sorting-independent algorithms and one of them yields the best-performing heuristic overall. A new heuristic approach for the MBSBPP is also proposed, which may be combined with level and pseudolevel algorithms for the strip packing problem in order to nd solutions to the problem very rapidly. The best-performing plane-packing heuristic is modi ed to pack items into the largest bins rst, followed by an attempted repacking of the items in those bins into smaller bins with the aim of further minimising wasted space. It is found that the resulting plane-packing algorithm yields the best results in terms of time and packing density, but that the solution di erences between pseudolevel algorithms are not as marked for the MBSBPP as for the strip packing problem.