Institute for Wine Biotechnology
Permanent URI for this community
Browse
Browsing Institute for Wine Biotechnology by browse.metadata.advisor "Cordero Otero, Ricardo R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMaltotriose transport in yeast(Stellenbosch : Stellenbosch University, 2007-12) Smit, Annel; Cordero Otero, Ricardo R.; Pretorius, Isak S.; Du Toit, Maret; Stellenbosch University. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: The conversion of sugar into ethanol and carbon dioxide is a process that has been intertwined with human culture and long as civilized man has existed. This fermentation process has been dominated by the micro-organism Saccharomyces cerevisiae and from providing ancient seafaring explorers of a non perishable beverage to equipping bakers with a raising agent to turn flour into bread; this organism with its fermentative potential, has formed an essential part of most societies. In more recent times, many industries still rely on this basic principle. The complexities and efficiencies of the conversion of sugar into its various fermentative byproducts have been studied and optimised extensively to meet the specific demands of industries. Depending on the raw material used as starting point, the major beneficiaries of the useful characteristics have been alcoholic beverage producers (wine, beer, and whiskey amongst others), bakers (bread leavening) and biofuel producers. One of the obstacles in fermentation optimisation is the sugar consumption preferences displayed by the organism used. S. cerevisiae can consume a wide variety of sugars. Depending on the complexities of its structures, it shows a preference for the simpler saccharides. The fermentation of certain more complex sugars is delayed and runs the risk of being left residually after fermentation. Many of the crops utilised in fermentation-based products contain large amounts of starch. During the starch degradation process many different forms of sugars are made available for fermentation. Improved fermentation of starch and its dextrin products would benefit the brewing, whiskey, and biofuel industries. Most strains of Saccharomyces ferment glucose and maltose, and partially ferment maltotriose, but are unable to utilise the larger dextrin products of starch. This utilisation pattern is partly attributed to the ability of yeast cells to transport the aforementioned mono-, di- and trisaccharides into the cytosol. The inefficiency of maltotriose transport has been identified as the main cause for residual maltotriose. The maltotriose transporting efficiency also varies between different Saccharomyces strains. By advancing the understanding of maltotriose transport in yeast, efforts can be made to minimise incomplete fermentation. This aim can be reached by investigating the existing transporters in the yeast cell membrane that show affinity for maltotriose. This study focuses on optimising maltotriose transport through the comparison of the alpha glucoside transporter obtained from different strains of Saccharomyces. Through specific genetic manipulations the areas important for maltotriose transport could be identified and characterised. This study offers prospects for the development of yeast strains with improved maltose and maltotriose uptake capabilities that, in turn, could increase the overall fermentation efficiencies in the beer, whiskey, and biofuel industries.
- ItemOptimization of β-glucosidase activy in recombinant Saccharomyces cerevisiae strains(Stellenbosch : Stellenbosch University, 2007-12) Ranwedzi, Ntanganedzeni; Van Rensburg, P.; Cordero Otero, Ricardo R.; Stellenbosch University. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Wine is a complex medium. Wine aroma, flavour and colour are important quality factors, but these can be influenced by many factors, such as grape-derived compounds that exist as free volatiles and also as glycosidically bound. The chemical composition of wine is determined by factors such as grape variety, geographic position, viticulture condition, microbial ecology of the grape and the winemaking process. The varietals aroma is determined by both the volatile and the non-volatile compounds, such as monoterpenes, norisoprenoids and benzene derivatives, which are naturally present in the wine. Monoterpenes are very important in the flavour and aroma of grapes and wine. They can be found in grapes and wine either in the free, volatile and odorous form, or in the glycosidically-bound, non-volatile and non-odorous form. The ratio of glycosidically-bound compounds to free aroma compounds is very high in the Gewürztraminer, Muscat and Riesling cultivars in particular. The glycosidic bonds can be hydrolysed either by the acid method or by using enzymes. The acid method is disadvantageous because it can modify the monoterpenes, whereas enzymatic hydrolysis has the advantage of not modifying the aroma character. The enzyme method of breaking the glycosidic bonds occurs in two successive steps: initial separation of glucose from the terminal sugar by a hydrolase (a-L-arabinofuranosidase, a-L-rhamnosidase or β-apiosidase, depending on the aglycone moiety), followed by the breaking of the bond between the aglycone and glucose by β-glucosidase. The enzyme β-glucosidase can be obtained from many plant (Vitis vinifera), bacterial, yeast or fungal sources. Most of the enzymes produced by these sources are not functional under the winemaking conditions of low pH, low temperature, high glucose and high ethanol content. However, β-glucosidases from fungal origins, particularly from Aspergillus spp., are tolerant of winemaking conditions. The idea of using the β-glucosidase gene from the fungus Aspergillus kawachii (BGLA), which is linked to the cell wall and the free β-glucosidase, was to determine if anchoring the enzyme to the cell wall will increase the activity of the enzyme compared to the free enzyme. Four plasmids, pCEL 16, pCEL 24, pDLG 97 and pDLG 98, were used in this study. BGLA that was cloned into the plasmids pCEL 24 and pDLG 97 was linked to CWP2, and in pDLG 98 it was linked to AGa1 anchor domains. All the plasmids were genome-integrated and expressed in the reference strain Saccharomyces cerevisiae 303-1A. All the transformants were grown in 2% cellobiose and showed higher biomass production compared to the reference strain. β-Glucosidase activity was also assayed and transformed strain W16 showed a fourfold increase in activity compared to the reference strain. There was no significant increase in the activity of the other transformed strains, W24, W97 and W98. Enzymatic characterisation for optimum pH and temperature was done – for all strains the optimum pH was 4 and the optimum temperature was 40ºC. The recombinant strains together with the reference strain were used to make wine from Gewürztraminer grapes. The levels of numerous monoterpenes were enhanced in the resultant wines. The concentration of nerol was increased fourfold, that of citronellol twofold, and geraniol was 20% higher than in the wild type. There was also an increase in the levels of linalool and a-terpinol, but this was not significant. In wines produced with W97, W98 and W24, monoterpene levels did not show a significant difference. In future, the expression of the W16 expression cassette in an industrial wine yeast strain could be performed. In combination with the production of enzymes such as a-arabinofuranosidase, a-rhamnosidase and β-apiosidase, which are involved in the first step of enzymatic hydrolysis, this wine strain could release the bound monoterpenes and enhance the aroma of the wine.