Doctoral Degrees (Botany and Zoology)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Botany and Zoology) by browse.metadata.advisor "Brink, Danie"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe effects of organophosphate exposure on non target terrestrial and aquatic organisms following different exposure regimes : linking biomarker responses and life-cycle effects(2010-12) Jordaan, Martine Saskia; Reinecke, Sophie; Brink, Danie; University of Stellenbosch. Faculty of Science. Dept. of Botany and Zoology.ENGLISH ABSTRACT: The use of organophosphate pesticides is still an integral part of commercial farming activities and these substances have been implicated as a major source of environmental contamination in South Africa. Evidence exists that many non target animals in and around agricultural areas are at risk of being affected due to the mobile nature of pesticides and the intermittent nature of pesticide application. The extent to which non-target animals are affected by exposure to two organophosphates (azinphos-methyl and chlorpyrifos) was investigated through monitoring selected biomarker responses and life cycle effects under laboratory conditions in two selected test species. A representative species from both the aquatic and terrestrial environment was used as these two compartments of the environment are inevitably linked due to the mobility of pesticides from the area of application to surrounding areas. The earthworm Eisenia fetida was used as test organism in the terrestrial environment while the fish Oreochromis mossambicus served as representative of the aquatic environment. Juvenile life stages of both species were subjected to standard acute toxicity tests which showed that for both species, juvenile life stages were more sensitive to both pesticides than adults. It was also illustrated that azinphos-methyl is more toxic than chlorpyrifos to both species. Both test species were also subjected to an intermittent exposure regime in order to assess the effects of repeated pesticide application on biomarker, life-cycle and behaviour responses. The results indicated that for similar exposure regimes, azinphos-methyl was more toxic to E. fetida than chlorpyrifos and detrimentally affected all endpoints investigated. The present study suggests that exposure concentration may have a more pronounced effect in inducing a toxic response than exposure interval, irrespective of the pesticide used. In addition to this, E. fetida was unable to avoid the presence of these pesticides in soil, even at concentrations as high as 50% of the LC50 value, indicating that the presence of pesticides in the soil pose a realistic threat to earthworms and other soil dwelling organisms. Biomarker responses, morphological effects and feeding behaviour was assessed for O. mossambicus and similar to the terrestrial toxicity experiments, there was evidence to suggest that in the case of an intermittent exposure scenario, azinphos-methyl was more hazardous than chlorpyrifos to this species. For the majority of endpoints that were investigated, it appeared that exposure interval played a more important role in inducing an effect than exposure concentration. At a shorter exposure interval, the majority of endpoints showed no difference between higher and lower exposure concentrations, while at a longer exposure interval the effects of exposure concentration became evident. In addition, feeding behaviour was affected by pesticide exposure in a dose-dependent manner. The present study yielded important results that improve the understanding of biological impacts of pesticide pollution on the environment. This can aid in optimising farming practices such as pesticide application not only in terms of eradicating the pest organisms, but also in terms of mitigating the environmental effects associated with large-scale pesticide use, thereby ensuring sustained biodiversity in these areas.