Department of Soil Science
Permanent URI for this community
Browse
Browsing Department of Soil Science by browse.metadata.advisor "Ellis, F."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAlteration of the soil mantle by strip mining in the Namaqualand Strandveld(Stellenbosch : University of Stellenbosch, 2005-03) Prinsloo, H. P.; Fey, M. V.; Ellis, F.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Soil Science.The purpose of this study was to investigate and identify the occurrence of specific soil properties that may be important for vegetation functioning and the possible effect of the loss of or changes in these properties on rehabilitation success on the sandy coastal plains of the West Coast, South Africa. The study area covered approximately 9 400 ha on the Namaqualand coast in the vicinity of Brand-se-Baai (31º18'S 17º54'E), approximately 350 km north of Cape Town and 70 km north-west of the nearest town, Lutzville. A soil survey was done to reveal the presence of important pedological features. The 20 soil profiles surveyed are situated within six vegetation communities. Pedological features such as surface water repellency, permeable apedal subsurface horizons, subsurface impediments such as cemented (calcrete or dorbank) hardpans and significantly more clayey (cutanic, luvic) horizons were identified. A comparative study between rehabilitated and natural soils indicates that mining operations result in the formation of saline sand tailings, stripped of a large portion of the clay and organic matter fraction. The natural leaching of solutes, over a period of 25 months, is sufficient to lower salinity of the tailings to levels comparable to natural soils. This leaching can also results in lowering of soil fertility. Removal of the dorbank and the dense neocutanic horizon in the western side of the mine, loss of topographical features such as small dune systems and heuweltjies, destruction of natural soil profile morphology and the lowering of organic carbon and clay plus silt fraction can have detrimental effects on attempts at rehabilitation of this area to a natural condition similar to that which preceded the mining operation. Infiltration fingering and deep percolation results in the development of an aquifer below the reach of shallow-rooted desert shrubs. A method of water acquisition by vegetation through water distillation is investigated as a possible solution to the apparent discontinuum between the shallow root systems and deeper-lying aquifer. Volumetric water content measurements indicated that precipitation of 29.5 mm, over a period of 10 days, did not result in any variation at 235 mm, 360 mm and 900 mm depths. An average volumetric water content increase of 0.4 mm per night was measured in the first 23.5 cm of soil surface. This amount is a significant source of water that can explain the shallow root distribution. Water vapour movement due to temperature gradients can explain the diurnal volumetric water content fluctuations observed. Further studies are necessary to determine to what extent the depth of water infiltration influences the capacity of subsurface dew to provide plants with a nocturnal water source. Findings of this study can be summarised into two concepts namely: • Heuweltjies, small dune systems, and variation in depth of cemented hardpans are the main features that contribute to pedosphere variation and possibly to biodiversity. • Pedogenic features such as topsoil hydrophobicity, and cemented dorbank and dense more clayey (cutanic, luvic) subsurface horizons are important components of a soil water distillation process that could be a driving force behind vegetation functioning in this region. Mine activities result in the loss of certain pedogenic features and soil properties that that could be key ingredients to ecosystem functioning. The inability to recognise their significance and ignorance thereof when planning rehabilitation methods might prevent sustainable restoration of the environment.
- ItemChemical characterisation of the soils of East Central Namibia(Stellenbosch : University of Stellenbosch, 2009-03) Coetzee, Marina Elda; Ellis, F.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Soil Science.ENGLISH ABSTRACT: A number of chemical and physical features of Namibian soils in a 22 790 km2, two degree-square block between 17 – 19 oE and 22 – 23 oS in eastern central Namibia, had been investigated, and the fertility status established. In 80 % of samples the nitrate, nitrite, and sulfate concentrations of the saturated paste extract are 0 – 54.6 mg l-1 NO3 -, 0 – 24.7 mg l-1 NO2 -, and 5.4 – 20.9 mg l-1 SO4 2- respectively. In 90 % of samples the plantavailable phosphorus is below 12 mg kg-1, which is low for a soil under natural grassland, but in line with the prevailing semi-arid climate and low biomass production of the study area. In 80 % of samples the extractable calcium, magnesium, potassium, and sodium concentrations are 0.61 – 5.73 cmolckg-1 Ca (122 – 1 146 mg kg-1 Ca), 0.12 – 2.28 cmolckg-1 Mg (15 – 278 mg kg-1 Mg), 0.13 – 0.54 cmolckg-1 K (51 – 213 mg kg-1 K) and 0.05 – 0.38 cmolckg-1 Na (11 – 87 mg kg-1 Na) respectively, while the exchangeable calcium, magnesium, potassium, and sodium concentrations are 0.21 – 6.02 cmolckg-1 Ca, 0.12 – 2.01 cmolckg-1 Mg, 0.12 – 0.49 cmolckg-1 K and 0 – 0.13 cmolckg-1 Na respectively. The mean ± 1 standard deviation is 3.57 ± 3.57 cmolckg-1 for cation exchange capacity, 3.48 ± 3.61 for sum of exchangeable bases and 4.53 ± 4.39 for sum of extractable bases. The cation exchange capacity and the sum of exchangeable bases are virtually identical, which indicate the almost complete absence of exchangeable H+ and Al3+ in the soils of the study area, as expected from a semi-arid climate. None of the profiles were classified as saline or sodic. In 80 % of samples the plant-available iron, manganese, zinc and copper concentrations are 7.2 – 32.8 mg kg-1 Fe, 13.6 – 207.5 mg kg-1 Mn, 0 – 1.80 mg kg-1 Zn and 0 – 4.0 mg kg-1 Cu respectively. Soil organic matter content of the study area soils ranges between 0.05 – 2.00 %, with most (80 % of samples) containing 0.25 – 1.20 % organic matter. This is considerably lower than values reported in literature, even for other southern African countries. The reason lies with the hot, semi-arid climate. The pH distribution is close to normal, with 80 % of samples having pH (H2O) of 5.54 – 8.18, namely moderately acid to moderately alkaline. Sand, silt and clay content of most (80 %) samples varies between 60.3 – 89.7 % sand, 4.6 – 25.2 % silt and 3.5 – 19.1 % clay. The soils of the study area are mainly sandy, sandy loam and loamy sand. In 80 % of samples the coarse sand fraction ranges from 3.5 – 34.5 %, the medium sand fraction from 20.5 – 37.3 %, the fine sand fraction from 38.7 – 54.5 % and the very fine sand fraction from 0.0 – 12.9 % of all sand. The fine sand fraction, thus, dominates, with very fine sand being least abundant. The topsoil contains relatively more coarse sand and less very fine sand than the subsoil. Instances of sealing, crusting and hardening occur sporadically in the study area. Cracking is only found in pans, while self-mulching is not evident. No highly instable soils were encountered in the study area. The water-holding capacity is generally low, with depth limitations in the western highlands, the Khomas Hochland, and texture limitations in the eastern Kalahari sands. The central area has soils with a somewhat better water-holding capacity, but it is still very low when compared to arable soils of temperate, sub-humid and humid zones elsewhere in southern Africa. Soil characteristics are perceptibly correlated with climate, parent material, topography, degree of dissection of the landscape and position in the landscape. The most obvious differences are between soils formed in schistose parent material of the Khomas Hochland in the west and those of the Kalahari sands in the east. The soils of the study area are unsuitable to marginally suitable for rainfed crop production, due to low iv fertility. The study area is climatologically unsuited for rainfed crop production, so the present major land use is extensive livestock production on large farms. The natural vegetation is well adapted to the prevailing conditions. The methodology followed to delineate terrain units, with a combination of procedures involving digital elevation data and satellite imagery, seems to work well in the Namibian landscape. This study thus served as a successful proof-of-concept for the methodology, which can in future be rolled out for the remainder of the country. The site and analytical information is available in digital format as spreadsheets and in a geographical information system, as well as in a variety of digital and printed maps.
- ItemDecontamination of soils by activation with acids and bases(Stellenbosch : Stellenbosch University, 2004-03) Hardie, Ailsa Ghillaine; Fey, M. V.; Ellis, F.; Stellenbosch University. Faculty of AgriSciences. Dept. of Soil Science.ENGLISH ABSTRACT: New, more receptive surfaces can be generated in soils by a partial dissolution of existing, crystalline solids followed by re-precipitation as poorly crystalline colloids with a larger capacity to adsorb ionic and molecular contaminants. This priming process can be carried out by treating the soil with strong acid or base and then neutral ising it again. The aim of this study was to investigate the effectiveness of acid and base treatments in reducing inorganic contaminant availability in different soil types. The first study involved investigating the change in cation (cadmium[II], copper[II]) and anion (phosphate) sorption of four different soils before and after priming. Hydrochloric acid and KOH were used to adjust the pH of soils to below pH 2 or above pH 12 in the dissolution stage of the priming treatment. After neutralisation it was found that base priming resulted in an increase in metal cation adsorption in all the soils, most notably in the sesquioxidic (increase from 19.5 to 73.5 mmol Cd.kg-1 soil) and kaolinitic soils (from 16.9 to 38.3 mmol Cd.kg-1 soil), whereas acid priming decreased it or had little effect on cation sorption. However, acid priming increased anion sorption in all soil types, to a greater extent than base priming, most notably in the organic soil (from 6.3 to 14.7 mmol P04.kg-1 soil). This can be attributed to the differences in the nature of the precipitate (more aluminous or alumino-siliceous) depending on whether the dissolution was carried out in acid or basic conditions, and the final pH of the soil solution, as the hydroxyaluminium and hydroxyaluminosilicate precipitates which form are known to enhance pH-dependent sorption of metals. In the second study, the soil was suspended in Cd or Cu solutions and then the pH was adjusted to below 2 or above 12 using HCI or KOH. After 5 days of shaking the pH was adjusted to a neutral pH again. The availability of the Cd and Cu was determined at each of the stages in the treatment, and it was found that both the acid and base treatments were effective in removing Cu from solution, whereas only the base treatment was effective in removing Cd. Determinations were also carried out using H2S04 and Ca(OH)2 and it was found that they were equally effective. It can be proposed that this acid-base pair would be of most practical importance as the salt generated is gypsum which is generally considered benign, and can actually help to improve the soil structure. Activation of soils by acid or base conditioning could have some useful applications in decontaminating soils or decreasing the mobility of inorganic contaminants in soils. Primed soils could also be used as cheap absorbents for decontaminating water.
- ItemAn investigation into the influence of soil pattern on preferential flow and groundwater recharge in fractured bedrock and cover sand aquifers(Stellenbosch : Stellenbosch University, 2011-12) Stander, McLachlan Du Toit; Rozanov, Andrei Borisovich; Jovanovic, N.; Ellis, F.; Stellenbosch University. Faculty of AgriSciences. Dept. of Soil Science.ENGLISH ABSTRACT: Increased pressure on groundwater sources due to increased population size and threats of climate change is driving research to better understand the process of aquifer recharge. Soil pattern is of interest as it serves to partition rainwater into different flowpaths destined for surface runoff, evapotranspiration and deep percolation. The challenges inherent to studying these flowpaths are almost universal as uncertainties concerning spatial and temporal heterogeneity in catchments make the upscaling of models complex. This research addresses these challenges as it aims to improve the catchment scale hydrological models of two aquifer systems: One a fractured bedrock system at the Kogelberg Nature Reserve, Kleinmond, and the other a cover sand system in Riverlands Nature Reserve, Malmesbury. This study focussed on strengthening the link between what is known about a given soil form and the hydrological assumptions that can be drawn from that classification, and formulating the results so that they may ultimately be used to calibrate the recharge prediction models for the respective catchments. The research was done in two parts: The first phase was to conduct soil surveys in both reserves during which soils were classified according to South African Soil Classification. Samples were collected at representative observation points which provided textural data for use in pedotransfer functions (PTFs). These PTFs were used to estimate plant available water (PAW) and hydraulic conductivity (K) for the observed profiles. Infiltration experiments were subsequently done to investigate the infiltration patterns of distinctly different soil forms at two sites from each reserve. The experiments included double ring and mini disc infiltration, volumetric water content determination and flow path visualisation using a staining dye. A statistical comparison between the hydrological properties (K and PAW) of the different soil forms suggest that hydraulic properties differed between the deep sandy soil forms (Fernwood, Pinegrove and Witfontein in Kogelberg and Witfontein, Concordia and Lamotte in Riverlands) and the shallow rocky soil forms (Cartref and Glenrosa in Kogelberg). Thus grouping of hydrological similar units (HSUs) could be done on the basis of the soil forms present within the given catchments. The infiltration study showed that shallow, rocky soils that grade into bedrock would have infiltration rates far greater than those estimated using PTFs in Kogelberg. This is due to the prevalence of continuous preferential flow (PF) of water between coarse fragments in these profiles. Recharge estimates would thus be inaccurate in such soils and calibration using locally derived data is recommended. On the contrary, PTFs produced accurate infiltration estimates relative to measured infiltration rates in deep sandy soils in Kogelberg and Riverlands. The Lamotte soil form is an example of such a soil form. It should however be noted that an increase in PF in these soils had subsequently higher K values than estimated, thus illustrating the link between PF and accelerated infiltration rates. These results confirm that using soil survey information, in the form of a soil map, and calibrated hydrological properties, one can delineate HSUs that encompass a large degree of heterogeneity in a given catchment.
- ItemAn investigation of the soil properties controlling gully erosion in a sub-catchment in Maphutseng, Lesotho(Stellenbosch : University of Stellenbosch, 2010-03) Van Zijl, George Munnik; Ellis, F.; Rozanov, Andrei Borisovich; University of Stellenbosch. Faculty of Agrisciences. Dept. of Soil Science.ENGLISH ABSTRACT: Lesotho is a country with an international reputation for the severe degree of soil erosion in its landscape. Despite several national soil conservation projects, soil erosion continues at an astounding rate. One of the reasons for this is possibly that the interactions between soil properties and erosion in Lesotho are not understood. Soil erosion is a site specific, cyclic phenomenon, controlled by geomorphological thresholds. To control soil erosion, the processes and soil properties which influence soil erosion in the specific place must be understood. In this study the soil properties of a highly eroded sub-catchment in Maphutseng, Lesotho was investigated. The gully extent in the sub-catchment, in 1957 and 2004 respectively, was mapped from aerial photos. These maps show where in the landscape gullies developed during this time. The gully maps were superimposed on maps of several soil erosion factors, to correlate the spatial distribution of the erosion factors with that of the gully distribution. A soil map was especially drawn for this. The spatial analysis shows that gully development between 1957 and 2004 was primarily confined to the area where duplex soils occur. The rest of the sub-catchment underwent negligible differences in gully extent during this time. The initiation of the gullies on the duplex soil area is ascribed to tunnel erosion. The high dispersibility of the duplex soil samples, sink holes which occur in this area and previous observations by researchers in this area gave evidence to this hypothesis. In the second part of the study the soil properties of seventeen soil profiles from across the study site were analysed. The difference in gully distribution between the duplex soils area and the rest of the catchment is ascribed to the high dispersibility of the duplex soils. No strong correlations could be found between the dispersion index and other determined soil properties. Segmented quantile regression was used to analyse the data further. Soil samples with moderate levels of total carbon (1.17%), iron oxide (0.9%) and effective cation exchange capacity (13.7 cmolc/kg), have below average dispersibility. When none of these stabilising agents are present in moderate amounts, soils with even low exchangeable sodium percentage values (0.68%) are dispersive. Furthermore, soils which have developed in colluvial material from basaltic origin were found to be less dispersive, presumably because of the amorphous clay minerals present in the volcanic material. The colour and increase in clay content between the A and B horizons of a soil can indicate the tunnel erosion potential of the soil. Dark coloured soils (values less than 4 and chromas less than 3) were found to have low dispersibility and free water can accumulate in the subsoils where the B horizon has much more clay than the A horizon. The accumulation of free water in the subsoil is necessary for tunnel formation. Thus soils with dark colours and/or a low clay accumulation index have low tunnel erosion potential.
- ItemSoil fertility constraints to small-scale agriculture in North-west Zambia(Stellenbosch : Stellenbosch University, 2008-03) Symons, Julia; Fey, M. V.; Ellis, F.; Stellenbosch University. Faculty of AgriSciences. Dept. of Soil Science.The soils of north-west Zambia are largely unexplored and are regarded by local residents as problematic in providing sufficient nutrients for the staple crop of maize in the area. The area is semi-tropical, with an average rainfall of 1300mm annum-1 falling predominantly in the summer. The undulating landscape is dominated by miombo woodland interspersed with savanna grassland. Little work has been done on these soils and further information is required to understand their origin and their fertility status. The main objectives of this thesis were: 1) to classify and sample soils from a large number of small-scale agricultural lands, 2) to develop a better understanding of these soils chemical characteristics, 3) to determine the effect of vegetation clearance on soil fertility by sampling adjacent uncultivated land, and 4) to test locally derived rock dust as a soil ameliorant in pot trial. Soils from 100 agricultural and adjacent bush/forest sites were classified and analysed to determine their fertility status. They were tentatively classified according to the WRB system and are dominated by Arenosols, Acrisols and Ferralsols with infrequent occurrences of Lixisols. Most of these soils have a sandy texture. The clay fraction comprises of gibbsite, kaolinite and hydroxyl-Al interlayered vermiculite (HIV), with a few soils also having some mica present. The soils are consistently acidic with 42% of soils sampled having a pH (KCl) <4.3. Furthermore, the subsoils proved to be equally if not more acidic than the topsoils. Low nutrient levels are invariably associated with the soil acidity, with 84% of soils having <15mg/kg P, 59% of soils <50 mg/kg K, 80% soils <300 mg/kg Ca, and 44% soils <80 mg/kg Mg. Comparisons between cultivated and bushland soils showed no consistent changes to the soil acidity and fertility. This is contrary to research that was reviewed but is likely to have been affected by the spatial variability of these soils arising from the termite dominated landscape and the soils having been derived from different parent materials. Amelioration of these soils is required in order to increase yields. It is thought that lime, used with an N, P, K, Zn and B fertilizer, will best remedy the deficiencies found in these soils. Using these nutrients could raise the yields of <1t.ha-1 to in excess of 5 t.ha-1. Local soil ameliorants of crushed rock, ash, compost, green manure and termite mounds were also considered with pulverised granite being tested through factorial pot trials to determine its usefulness as a source of K and alkalinity. It raised both soil pH and K levels but is of limited value as these rises were not significant enough to affect yield. It is recommended that future research should: 1) strategically sample across the district, classify soils and determine their fertility status; 2) compile a soil yield potential map and 3) undertake field trials to test the quantities and effectiveness of fertilizers alongside local soil ameliorants.
- ItemSoil Formation on the Namaqualand Coastal Plain(Stellenbosch : University of Stellenbosch, 2008-03) Francis, Michele Louise; Ellis, F.; Fey, M. V.; University of Stellenbosch. Faculty of Agrisciences. Dept. of Soil Science.The (semi-)arid Namaqualand region on the west coast of South Africa is wellknown for its spring flower displays. Due to the aridity of the region, soils research has lagged behind that of the more agriculturally productive parts of South Africa. However, rehabilitation efforts after the hundred or so years of mining, coupled with the increasing ecology and biodiversity research, have prompted a recent interest in Namaqualand soils as a substrate for plant growth. The area is also notable for the abundance of heuweltjies. Much of the previous heuweltjie-work focussed on biogenic aspects such as their spacing, origin and age, but although heuweltjies are in fact a soil feature, there have been few published studies on the soil forming processes within heuweltjies. However, the depositional history of the sediments on the Namaqualand coastal plain is well constrained, which is in stark contrast to the paucity of data on their subsequent pedogenesis. Given that the regolith has been subaerially exposed in some parts for much of the Neogene, the soil formation forms an important part of the sediments’ history. The primary aim of this thesis, therefore, was to examine the soil features of the Namaqualand coastal plain to further the understanding of pedogenesis in the region. The regolith of the northern Namaqualand coastal plain, often ten or more metres deep, comprises successive late Tertiary marine packages, each deposited during sea-level regression. The surface soil horizons formed from an aeolian parent material. The relatively low CaCO3 in the aeolian sands dictated the pedogenic pathway in these deposits. The non-calcareous pathway lead to clay-rich, redder apedal horizons that show a stronger structure with depth, and generally rest directly on marine sands via a subtle discontinuity that suggests pedogenesis continues into the underlying marine facies. The calcareous pathway lead to similar clay-rich, redder apedal B horizons, but which differ in that they are calcareous, and rest on a calcrete horizon often via a stoneline of rounded pebbles. Deeper in the profile, there is generally a regular alteration of sedimentary units, with the upper shoreface facies showing reddening, and the lower shoreface sands remaining pale. This seems to be a function of the grain size, since the upper shoreface materials are coarser, and the redder parts of the lower shoreface are also associated with slightly coarser sands. In some strata the oxidation of glauconite-rich sediments resulted in an orange colour. In an area with abundant heuweltjies, a strongly-cemented calcretized nest was present about 2 m deep within a silica cemented, locally calcareous dorbank profile. Vertical termite burrows are present up to 12 m deep, and appear to have been conduits for preferential vertical flow. Soil formation and termite activity is at least as old as the Last Interglacial. E horizons may have formed in a wetter Last Interglacial paleoclimate, but they are still active in the present day. The Namaqualand coastal plain, with its extensive areas of calcrete development, is almost a textbook setting for calcrete development by inorganic processes. However, these calcretes also show microscale biogenic features. These include M rods, MA rods, and fungal filaments. Abiotic alpha-fabric seems dominant in mature calcrete horizons, and beta-fabric in calcareous nodules in a calcic B horizon above calcrete. The apparent absence of Mg-calcite and dolomite, and abundance of sepiolite in the calcretes of coastal Namaqualand suggests that these Mg-rich clay minerals are the main Mg-bearing phase. Deformation (pseudo-anticlines) in the calcrete appear to result primarily from the displacive effect of calcite crystallization. Although evidence of shrink/swell behaviour is present in the form of accommodating planes, it does not appear to be as volumetrically significant as displacive calcite. Indurated light-coloured horizons that resembled calcrete but are non- to mildly calcareous, break with a conchoidal fracture, resist slaking in both acid and alkali, turn methyl-orange purple, and show a bulk-soil sepiolite XRD peak are similar to palygorskite-cemented material (‘palycrete’) from Spain and Portugal, and so were tentatively named ‘sepiocrete’. Sepiolite and palygorskite are often reported from arid region soils but there has been no recorded cementation of soils by sepiolite. The degree of induration in some of these horizons suggest that amorphous silica could play a role in cementation, and so this thesis compares the two silica-cemented horizons encountered in Namaqualand (silcrete and dorbank (petroduric)) to these ‘sepiocrete’ horizons. Both silica and sepiolite are present in the matrix, although the degree to which silica and sepiolite dominate seems to vary even within same horizon. It seems most probable that both contribute to the structural properties of the horizon. Sepiolitic horizons do not form a diagnostic horizon in the World Reference Base, Soil Taxonomy, or the South African system. To fit the existing soil classification schemes, the terms ‘sepiolitic’ and ‘petrosepiolitic’ (in the same sense as ‘calcic’ and ‘petrocalcic’) would be appropriate. The term ‘sepiolitic’ should be used for horizons which: contain sepiolite in amounts great enough for it to be detected by XRD in the bulk soil, peds (a fractured surface and not just the cutan) cling strongly to the wetted tongue, and methyl orange turns from orange to purple-pink over most of a fragmented surface. The term can be easily be applied as a adjective to other hardpans where sepiolite is significant but not necessarily cementing, such as ‘sepiolitic’ petrocalcic/petroduric. If the horizon is in addition to the above criteria cemented to such a degree that it will slake neither in acid (so cannot be classified as petrocalcic) nor in alkali (and so cannot be classified as petroduric) then the term ‘petrosepiolitic’ would be appropriate. The ‘sepiolitic’ criteria distinguish the ‘petrosepiolitic’ horizon from a ‘silcrete’, a silica-cemented horizon which does not fit the definition of petroduric. Sepiolite is more prominent than palygorskite in the XRD traces. The <0.08 μm fraction is the only size fraction where palygorskite could be detected before acetate treatment. It is unlikely that these fibrous clay minerals are inherited from either the marine or aeolian parent materials, they appear to be pedogenic in origin. Sepiolite and palygorskite are associated with the presence of calcite in the soil profile. Trends in MgO, Al2O3 and SiO2 show that the soil clay fractions lie on a mixing line between sepiolite and mica end-members, with a contribution from smectite, and is consistent with the XRD and TEM results. There is a good correlation between Fe2O3 and TiO2, which can be attributed to the ubiquitously presence of mica. There was no TEM evidence of fibrous mineral degradation to sheet silicates, nor for the evolution of mica laterally to a fibrous mineral. SEM analyses show that much of the sepiolite/palygorskite occurs as fringed sheets, but higher magnification often revealed these sheets to be composed of fibres. These are found coating (rather than evolving from) mica/illite particles, as free-standing mats, and are common on the grain-side of cutans. Some of these textures suggest illuviation of the fibrous clay minerals, but another explanation may be that sites such as that immediately adjacent to silicate grains have the highest concentration of silica for their formation. There was no conclusive evidence for or against the presence of kerolite in the clay fraction, although it does not appear to be a dominant phase in the <2 μm fraction. The hypothesis was that the permeable upper horizons in Namaqualand soils constitute a shallow ephemeral aquifer, which can be considered the pedogenic analogue of the saline lake environments in which sepiolite typically forms. The chemical evolution of the soil solution and clay mineral genesis could therefore be considered in the same terms as the geochemical evolution of closed-basin brines. The Namaqualand coastal plain, like other maritime areas, shows a trend of decreasing pH, increasing Ca and increasing Mg with increasing evaporation. This can be explained by their seawater-influenced initial ratios, and is consistent with the ‘chemical divides’ of the Hardie-Eugster model of brine evolution. Halite remains undersaturated at all concentrations in the saturated paste extracts. At higher concentrations, gypsum reaches saturation, and sulfate is removed from solution. H4SiO4 activity remains unchanged for all levels of evaporation and pH. Calcite remains close to saturation, and is only dependent on the HCO−3 activity and pH for the range of Cl− activity encountered. Most of the soils for which there is a positive sepiolite identification show a positive sepiolite saturation index. The sepiolite saturation index is independent of Mg2+ and H4SiO4 and only increases with increasing pH. Evidence of the pH control on sepiolite saturation is that sepiolite is commonly associated with calcareous horizons. Sepiolite precipitation is therefore more likely to be triggered when a solution encounters a pH barrier than by the concentration of ions by evaporation. The effect of a pH change on the sepiolite saturation index is much greater than that of the effect on calcite. The marine-influenced high Mg coupled with the Hardie- Eugster model of brine evolution offers an explanation for sepiolite-dominance at the coast, and palygorskite-dominance inland. Coastal areas, unlike continental areas, have Mg>HCO−3 initially, which results in an increasing Mg trend with evaporation during the precipitation of sepiolite according to the Hardie-Eugster scheme. The result is that after sepiolite precipitation is initiated by a geochemical pH-barrier, Mg levels will rise causing the increasing (Mg+Si)/Al ratio to continue to favour sepiolite precipitation. This suggests that once sepiolite has begun to precipitate, the subsequent salinity with its accompanying Mg increase makes substantial palygorskite formation unlikely to follow. The hardpan horizons in heuweltjies commonly grade from a ‘sepiolitic’ petrocalcic in the centre through ‘sepiolitic’/‘petrosepiolitic’ to the petroduric horizon on the edges. Noteworthy sepiolite-related pedofeatures in the calcrete include ‘ooids’ with successive sepiolite (hydrophilic and therefore a precipitational substrate) and micrite/acicular calcite layers in the coatings; and limpid yellow nodules with pseudo-negative uniaxial interference figures. They superficially resemble the spherulites in the fresh termite frass. Their fibrous nature and low birefringence, together with the low Ca, high Mg, Si composition, and molar Mg/Si ratios consistent with sepiolite. The pedogenesis of the hardpans in the heuweltjie is proposed to be as follows: enrichment of cations such as Ca and Mg in the heuweltjie centre caused by termite foraging results in calcite and clay authigenesis in the centre of the heuweltjie, leaving the precipitation of pure silica to occur on the periphery. The decaying organic matter concentrated in the centre of the mound by the termites is sufficient to supply the components for calcite precipitation in the centre of the heuweltjie. Following calcite precipitation, the pH is suitable for sepiolite precipitation. The movement of the Mg-Si enriched water downslope, coupled with the decrease in HCO−3 and increase in Mg2+ due to sepiolite precipitation, allows for the precipitation of the ‘sepiolitic’ zone on the outer side of the calcrete, and extend beyond the calcrete in some heuweltjies. The Namaqualand coastal plain is well positioned for further work on its regolith, particularly because of the mining excavations which provide excellent exposures of well-defined layers of the regolith down to bedrock. Soil formation and termite activity is at least as old as the Last Interglacial, and so more detailed work would further the understanding of the subaerial alteration history in southern Africa, as well as providing better-constrained information on the Namaqualand soils that can be used by land-use management and biosphere studies.