Masters Degrees (Institute for Wine Biotechnology)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Institute for Wine Biotechnology) by browse.metadata.advisor "Divol, Benoit"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemEvaluating the impact of yeast co-inoculation on individual yeast metabolism and wine composition(Stellenbosch : Stellenbosch University, 2014-12) Mains, Arlene Olive; Bauer, Florian; Divol, Benoit; Stellenbosch University. Faculty of AgriSciences. Dept. of Institute for Wine Biotechnology.ENGLISH ABSTRACT: The use of non-Saccharomyces yeasts together with Saccharomyces cerevisiae in mixed starter cultures has become an accepted oenological tool to enhance the organoleptic properties of wine. Recent studies have indeed demonstrated the positive contribution that non- Saccharomyces yeasts may have on the bouquet of wine. These mixed starter cultures are characterized by high inoculation levels of individual strains into the must, and each strain in turn is characterized by its own specific metabolic activity. These factors lead to a multitude of interactions occurring between the individual populations within the must. The fundamental mechanisms which drive these interactions are still largely unknown, but several studies have been conducted in order to investigate the metabolic outcome of these interactions. In this study, we endeavour to further characterize the interactions which occur between four individual non-Saccharomyces yeast strains in mixed culture fermentation with S. cerevisiae. Metschnikowia pulcherrima IWBT Y1337, Lachancea thermotolerans IWBT Y1240, Issatchenkia orientalis Y1161 and Torulaspora delbrueckii CRBO LO544 were used in mixed culture fermentations with a commercial strain of S. cerevisiae at an inoculation ratio of 10:1 (non-Saccharomyces: S. cerevisiae). The biomass evolution and fermentation kinetics of both participating species were affected by the high cell density of the other, with neither population reaching the maximal density attained by the pure culture fermentation. The final wine composition of each individual mixed fermentation showed clear differences, from the pure cultured S. cerevisiae and from each other, based on the concentrations of the major volatile compounds found in the wine. Upon further characterization of these specific mixed culture fermentations, it was found that each individual combination of non-Saccharomyces and S. cerevisiae produced similar increases and decreases of certain major volatile compounds as demonstrated by previous authors, using the same combination of non-Saccharomyces species together with S. cerevisiae. From a winemaking perspective, the use of these non- Saccharomyces yeast strains in combination with S. cerevisiae could be a useful strategy to diversify the chemical composition of wine, by increasing the concentration of certain desirable volatile compounds and by modulating the concentration of undesirable metabolites. Furthermore, this research serves as a foundation for further elucidation of the interactions which drive these metabolic outcomes in response to the high cell density of two yeast populations in mixed culture fermentations.
- ItemEvaluating the vitamin requirements of wine-related yeasts and the resultant impact on population dynamics and fermentation kinetics(Stellenbosch : Stellenbosch University, 2019-04) Julies, Jerobiam Marvin; Bauer, Florian; Divol, Benoit; Stellenbosch University. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Within the vineyard environment, grape berries serve as a habitat to various microorganisms including bacteria, filamentous fungi and yeasts, of which some play distinct roles in winemaking. Studies on yeast species other than Saccharomyces cerevisiae, commonly referred to as non-Saccharomyces (NS) yeasts in oenology, have evaluated the ability of these yeast to modulate the sensory profile of wine. In the early stages of spontaneous fermentation when the ethanol concentrations are low, the NS yeast population increases, but is progressively replaced by S. cerevisiae, which is better adapted to the environmental conditions associated with fermenting grape juice. The overall sensory profile of wine is in part a result of the metabolite production of yeasts, and the extent of the contribution of each species will depend on the total metabolic activity of each species. Metabolic activity is directly related to the availability of nutrients such as carbon, nitrogen, vitamins and trace elements. These nutrients are indeed converted to biomass and other metabolites, many of which are aroma and flavour active by-products. Only limited information regarding the nutrient requirements of wine-related yeasts other than S. cerevisiae has been published. Several studies have explored the carbon and nitrogen requirements of some NS species, but the vitamin requirements of many biotechnologically relevant species remains to be determined. Vitamins are organic compounds, mostly of a complex chemical nature, and serve as cofactors in metabolic reactions. Vitamins occur in small quantities in grapes and grape juice, but some data suggest that they may in some cases be limiting for yeast growth in this environment, affecting metabolism and ultimately impact the final wine. This knowledge gap motivates the current study, which focuses on the growth and fermentation kinetics of different NS yeasts when presented with varying concentrations of the relevant vitamins: biotin, pantothenate, inositol, thiamine and pyridoxine. In a first section, a high-throughput microtiter plate assay was optimised to allow for the rapid screening of the vitamin requirements of NS yeasts. The results of this assay showed differences in the vitamin requirements amongst the different yeasts. The statistically most significant vitamin-dependent yeast phenotypes from the screen were selected for further investigation. These included the dependence of Viniflora® P. kluyveri Frootzen ™ on biotin and thiamine and of Viniflora ® L. thermotolerans Concerto ™ on inositol. The data obtained from this study provide a better understanding of the vitamin requirements of NS yeasts and how these requirements can potentially enhance the growth performance of NS yeasts. The data suggest that targeted nutrient additions may lead to a better modulation of the overall sensory profile of wine.
- ItemExpression and purification of recombinant extracellular proteases originating from non-Saccharomyces yeasts(Stellenbosch : Stellenbosch University, 2013-12) Theron, Louwrens Wiid; Divol, Benoit; Zietsman, Anscha; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: During wine fermentation, yeasts release extracellular enzymes that significantly impact wine properties. While the extracellular proteins of Saccharomyces cerevisiae have been characterised, those of non-Saccharomyces yeasts remain largely unknown. Most of these enzymes break down sugar polymers or catalyse the liberation of glycosidically-bound molecules. Another category of enzymes of oenological interest is represented by acid proteases that are able to prevent or reduce protein haze, as reported in literature, while simultaneously increasing the assimilable nitrogen content of wine. The liberation of amino acids from peptides and proteins that serve as aroma precursors may also have an indirect effect on wine aroma. In a recent study performed at the Institute for Wine Biotechnology (IWBT), the sequences of two aspartic proteases were retrieved from non-Saccharomyces yeast species isolated from South African wines. The genes, MpAPr1 and CaAPr1, were isolated from two non-Saccharomyces species, Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384, respectively. However, no further characterization was undertaken. This study aimed to clone these two genes into a recombinant bacterial host for expression and purify the corresponding enzymes as a first step toward characterizing their kinetic properties. Considering that some non-Saccharomyces species have been shown to produce more than one acid protease, an additional aim was to identify novel acid proteases within M. pulcherrima IWBT Y1123. Cloning of the genes and transformation of the expression vectors into E. coli were achieved. Optimal conditions for induced expression were established following extensive optimization. Furthermore, while native extraction of the recombinant proteins was unsuccessful, denaturing conditions allowed their recovery, suggesting that the recombinant proteins are encapsulated into inclusion bodies. Recombinant MpAPr1 was purified by using a nickel based column system and mass fingerprinting of the purified enzyme (MpAPr1) confirmed its identity. Purification was followed by refolding experiments, but yielded poor recovery of active enzymes. Unfortunately, recombinant expression of CaAPr1 could not be observed for reasons yet to be elucidated that may include the large sequence dissimilarities between CaAPr1 and MpAPr1. Finally, Southern blot analysis on the genomes of M. pulcherrima IWBT Y1123 and C. apicola IWBT Y1384 revealed that both possess at least one additional protease other than those previously described. Further analysis of the extracellular proteome of M. pulcherrima IWBT Y1123 also confirmed the presence of at least one enzyme able to hydrolyze BSA at a low pH. Unfortunately, mass fingerprinting performed on the entire extracellular proteome and on small groups of proteins thereof did not allow the identification of these enzymes.
- ItemExtracellular acid proteases of wine microorganisms : gene identification, activity characterization and impact on wine(Stellenbosch : Stellenbosch University, 2012-03) Reid, Vernita Jennilee; Divol, Benoit; Du Toit, M.; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Non-Saccharomyces yeasts of oenological origin have previously been associated with spoilage or regarded as undesired yeasts in wine. However, these yeasts have recently come under investigation for their positive contribution towards wine aroma especially when used in sequential or co-inoculated fermentations with Saccharomyces cerevisiae. These yeasts are also known to secrete a number of enzymes that could be applicable in wine biotechnology. Amongst these enzymes are aspartic proteases. The secreted proteases from some non-Saccharomyces yeast may play a role in protein haze reduction, as demonstrated by some authors, while simultaneously increasing the assimilable nitrogen content of the wine for the utilization and growth of fermentative microorganisms. Moreover, the proteases may have an indirect effect on wine aroma by liberating amino acids that serve as aroma precursors. Although many screenings have been performed detecting protease activity in non-Saccharomyces yeasts, no attempts have been made to characterize these enzymes. This study set out to isolate and characterize genes encoding extracellular aspartic proteases from non-Saccharomyces yeasts. An enzymatic activity screening of a collection of 308 Saccharomyces and non-Saccharomyces yeasts, isolated from grape must, was performed. The aspartic protease-encoding genes of two non- Saccharomyces yeasts, which showed strong extracellular proteolytic activity on plate assays, were isolated and characterized by in silico analysis. The genes were isolated by employing degenerate and inverse PCR. One gene was isolated from Metschnikowia pulcherrima IWBT Y1123 and named MpAPr1. The other putative gene was isolated from Candida apicola IWBT Y1384 and named CaAPr1. The MpAPr1 gene is 1137 bp long, encoding a 378 amino acid putative protein with a predicted molecular weight of 40.1 kDa. The CaAPr1 putative gene is 1101 bp long and encodes a 367 amino acid putative protein with a predicted molecular weight of 39 kDa. These features are typical of extracellular aspartic proteases. The deduced protein sequences showed less than 40% homology to other yeast extracellular aspartic proteases. By heterologous expression of MpAPr1 in S. cerevisiae, it was confirmed that the gene encodes an extracellular acid protease. The expression of MpAPr1 was shown to be induced in media containing proteins as sole nitrogen source and repressed when a preferred nitrogen source was available. The gene was expressed in the presence of casein, bovine serum albumin (BSA) and grape juice proteins and repressed in the presence of ammonium sulphate. Expression was most induced in the presence of grape juice proteins, which was expected since these proteins are present in the natural habitat of the yeast. A genetic screening confirmed the presence of the MpAPr1 gene in 12 other M. pulcherrima strains isolated from grape juice. The extracellular protease activity of the strains was also visualized on plates. As far as we know, this is the first report on the genetic characterization of secreted aspartic proteases from non-Saccharomyces yeasts isolated from grape must and provides the groundwork for further investigations.
- ItemImpact of complex yeast nutrient products on selected non Saccharomyces yeasts(Stellenbosch : Stellenbosch University, 2020-03-31) Beukes, Louisa; Jolly, Neil; Divol, Benoit; Bauer, Florian; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: In recent years there has been a growing interest in non-Saccharomyces yeasts for winemaking due to their ability to produce more complex wines. These yeasts, considered weak fermenters, are used in combination with Saccharomyces cerevisiae and compete for nutrients such as nitrogen. Therefore, it is important for the winemaker to know what nutrients may be insufficient so that corrective action can be taken. Yeast assimilable nitrogen (YAN), a growth limiting resource naturally occurring in grape must, is important for yeast metabolism as well as for production of desirable aromatic compounds. When YAN is deficient it can lead to slow or stuck fermentations and production of undesirable compounds. Thus, to ensure a complete alcoholic fermentation and desirable aroma profile, nitrogen supplementation is required. Traditionally, ammonium salts are added as a nitrogen supplement, however, recently several complex yeast nutrients have also become commercially available. These yeast nutrients are yet to be investigated for fermentation with non-Saccharomyces yeasts. This study investigated the impact of eight complex commercial yeast nutrients on three commercial non-Saccharomyces yeasts (Torulaspora delbrueckii Biodiva™ TD291, Pichia kluyveri Viniflora® Frootzen™ and Metschnikowia pulcherrima Flavia® MP346). Fermentations were carried out with single yeasts or combined with S. cerevisiae in sequential fermentations in synthetic grape must. The M. pulcherrima sequential fermentation was repeated in Chenin blanc grape must. For the single yeast fermentations, it appeared that the nutrients had a greater effect on the onset of fermentation than on the growth of the yeasts and that one nutrient (nutrient treatment Y2) was preferred by all the yeasts. This is the first time that nitrogen supplementation at the same level but with different content was investigated for non-Saccharomyces wine yeast sequential fermentations. The ability of non-Saccharomyces yeasts to persist in sequential fermentations could be improved with nutrient selection. Further investigations with M. pulcherrima sequential fermentations in Chenin blanc must found clear differences for the two different matrices. Although synthetic must is a defined medium that reduces the risk of unknown variables, it is not a true representation of how these nutrients can influence non-Saccharomyces yeasts in real grape must. Nutrient selection can also increase desirable esters and influence the sensory properties of wine; however, this should be further investigated and confirmed through sensory evaluation. This study improved the current knowledge of non-Saccharomyces yeasts and their utilisation of complex yeast nutrients. It demonstrated that nutrient selection can improve non-Saccharomyces yeast implantation as well as improve production of desirable volatiles.
- ItemImpact of exogenous thiamine on Kluyveromyces marxianus under oenological conditions(Stellenbosch : Stellenbosch University, 2020-12) Labuschagne, Pieter Willem Jacobus; Divol, Benoit; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Managed inoculation of non-Saccharomyces yeast species is regarded as a practical way to introduce new characteristics to wine. However, these yeasts struggle to survive until fermentation is complete. The non- Saccharomyces strain, Kluyveromyces marxianus IWBT Y885, was recently isolated from South African grape juice and was partially characterised for winemaking purposes. This yeast strain displays relatively good fermentation ability as well as commercially relevant characteristics such as the production of strong pectinase activity and high phenylethanol and phenylethyl acetate production levels. In order to consider this strain for industrial winemaking, it is important to ensure its prolonged survival and good fermentation performance. A key factor for survival, growth and sustained metabolic activity of all yeasts is their nutrient requirements. Thus, identifying nutrients that are essential for maximising fermentation performance, and subsequently ensuring adequate levels of nutrients, is a means to ensure significant contribution of yeast to wine properties. This study aimed to identify essential nutrients, other than previously studied sugars and nitrogen, for maximum impact of K. marxianus Y885, as well as to characterise the outcomes of their utilisation. A multifactorial experimental design was employed to investigate the impact of nutrient concentrations on fermentation performance with K. marxianus Y885 in synthetic must. Exogenous thiamine concentration was determined to be the most significant factor impacting fermentation performance of K. marxianus Y885. The response to exogenous thiamine concentration for K. marxianus Y885 and S. cerevisiae EC1118 was compared in terms of population viability, fermentation rate, total sugars utilised, thiamine assimilation kinetics, and final wine composition. A saturation effect for initial thiamine concentration of K. marxianus Y885 fermentations was characterised, with a maximum fermentation rate and over 90% of available sugars utilisation obtained at 0.25 mg/L. A delayed uptake of thiamine at higher concentrations for K. marxianus Y885 suggested differential regulation of thiamine uptake compared to S. cerevisiae EC1118. In addition, different trends in metabolites produced between species suggest that thiamine concentration impacts the carbon metabolic flux differently in these two yeasts. To assess how this knowledge would translate to industrial winemaking conditions, the effect of maximum legal thiamine concentration to K. marxianus Y885/S. cerevisiae EC1118 sequential fermentations at semi-industrial scale in real grape must was investigated. No effect of thiamine supplementation on fermentation performance was observed, most likely as a result of the high native must thiamine content and lack of indigenous organisms that may compete for thiamine. However, thiamine concentration clearly differentially affected major volatile production of K. marxianus Y885 and S. cerevisiae EC1118. Notably, an increased fusel alcohol production of K. marxianus Y885 resulted from thiamine addition, which positively affects wine aroma. This study provides relevant information that may be used to ensure optimal utilisation of K. marxianus Y885 in oenology and aids in our understanding of how thiamine alters yeast metabolism.
- ItemInteraction of multiple yeast species during fermentation(Stellenbosch : Stellenbosch University, 2015-04) Luyt, Natasha Alethea; Bauer, Florian; Divol, Benoit; Stellenbosch University. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: The use of non-Saccharomyces yeasts together with the yeast S. cerevisiae in multistarter wine fermentations has emerged as a useful tool to modulate wine aroma and/or to decrease the concentration of undesirable compounds. However, upon inoculation, these yeast species do not co-exist passively, but interact in various ways. While competition for nutrients and the excretion of killer toxins in an antagonistic relationship are obvious and well established types of interactions, some studies have suggested the existence of other forms of cellular or molecular interactions. One of these includes physical cell-cell contact and to our knowledge, only one previous study has confirmed its existence in wine yeasts. Yeast interactions are also influenced by other factors, such as ethanol concentration, however some studies have highlighted the role that dissolved oxygen plays on the survival of non-Saccharomyces yeasts and their ability to compete for space with S. cerevisiae and little research has focused on this. This study aimed to investigate the occurrence of a physical cell-cell and/or metabolic interaction between S. cerevisiae and L. thermotolerans in mixed culture fermentations of synthetic grape must. For this purpose, fermentations in a Double Compartment Bioreactor (DCB) which separates yeast population through the use of a membrane were compared to mixed fermentations in the absence of the membrane, using the same reactor. Furthermore, the impact of oxygen supply on yeast behaviour was also assessed. Following mixed culture fermentations in a DCB, it was observed that the presence of S. cerevisiae led to a significant decline in viability in L. thermotolerans. This decline was significantly less prominent in mixed cultures where the cells were in indirect contact. Together, the data provided evidence for both cell-cell and metabolic interactions whereby S. cerevisiae had a strong negative influence on the growth of L. thermotolerans. However, it was also observed that L. thermotolerans had some negative impact on the growth of S. cerevisiae, leading to a reduction in biomass (when in indirect contact) and a reduced maximum CFU/mL compared to pure cultures. The data also suggest that direct physical contact may increase the production of glycerol and propanol, but this needs further investigation. By decreasing the frequency at which oxygen pulses were provided, a reduction in biomass and increase in fermentation duration was observed for all fermentations. However, this effect was somewhat reduced in mixed cultures. Here, no impact on fermentation duration was observed and the decrease in biomass was less compared to pure cultures. The impact of these oxygen pulses was also greater on L. thermotolerans. In the latter yeast’s pure culture a slight increase in glycerol was observed when less oxygen was provided and in general there appeared to be no impact on acetic acid production. Furthermore, there was little or no impact on volatile production, however, more repeats might reveal different results and therefore more research is needed to confirm these results. To our knowledge, this is the first study of its kind to confirm a physical cell-cell interaction between the yeast pair S. cerevisiae and L. thermotolerans.
- ItemInvestigating osmotic stress in mixed yeast cultures and its effects on wine composition(Stellenbosch : Stellenbosch University, 2015-04) De Kock, Marli Christel; Divol, Benoit; Bauer, Florian; Stellenbosch University. Faculty of Agrisciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: Grape must gives rise to various stress conditions for the yeast inoculated for alcoholic fermentation. These include hyperosmotic stress due to the high initial sugar concentration and redox imbalances due to the fast depletion of oxygen. Under these stress conditions, Saccharomyces cerevisiae tends to produce glycerol as an osmoprotectant and to regenerate reducing equivalents. However, the production of glycerol often leads to increased acetic acid production. According to literature, it seems that many non-Saccharomyces yeasts have a different metabolic response to the above-mentioned stress conditions, especially since it has been found that they produce low levels of acetic acid. Only recently non-Saccharomyces yeasts were researched to be used as starter cultures in wine fermentations. It is found that they can confer beneficial characteristics to the resulting wine. However, most of the non-Saccharomyces yeasts lead to stuck fermentations as confirmed by this study. Therefore, if the positive characteristics of these yeasts were to be exploited in wine making they need to be inoculated together with S. cerevisiae. When two yeasts are inoculated together, they affect each other and consequently the wine. In this context, the aim of this study was to investigate the metabolic response to hyperosmotic stress during wine fermentation of the following wine-related non-Saccharomyces yeasts: Lachancea thermotolerans, Torulaspora delbrueckii and Starmerella bacillaris. Fermentations were performed in a synthetic grape must medium with pure cultures of the mentioned strains as well as mixed cultures of each non-Saccharomyces yeast with S. cerevisiae. The fermentation behaviour was monitored and concentrations of various wine-related metabolites were determined. Concerning polyol concentrations, S. cerevisiae produced only glycerol while the non-Saccharomyces yeasts also produced other polyols. The low production of acetic acid in the non-Saccharomyces fermentations was confirmed especially in the case of L. thermotolerans. Moreover, this yeast produced high levels of the higher alcohols butanol and propanol. St. bacillaris produced significant levels of acetoin and isobutyric acid and T. delbrueckii produced an increased concentration of succinic acid. All these metabolites might play a role in maintaining intracellular redox balance. However, a more extensive systematic study is needed to investigate the extent of their involvement. The mixed cultures completed fermentation and had higher final glycerol levels than the control and lower acetic acid concentrations and therefore can contribute positively to the wine aroma. Furthermore, the mixed culture fermentations showed the potential of lowering the ethanol concentrations of wine. Furthermore it has been shown in literature that the yeasts present in the mixed culture can affect each other on gene expression level as well. However, there is little genetic information available on non-Saccharomyces yeasts. In this study, we sequenced the genes involved in glycerol and acetic acid biosynthesis of L. thermotolerans and T. delbrueckii. The gene sequences are fairly homologous with only a few differences. These gene sequences can be used to study gene expression of GPD1 and ALD6 from fermentation samples in order to determine to what extent the yeasts in a mixed culture influence the gene expression of one another.
- ItemInvestigating the impact of sulphur dioxide on Brettanomyces bruxellensis at a molecular and cellular level(Stellenbosch : Stellenbosch University, 2012-03) Duckitt, Edward; Divol, Benoit; Du Toit, Maret; Stellenbosch University. Faculty of AgriSciences. Dept. of Viticulture and Oenology. Institute for Wine Biotechnology.ENGLISH ABSTRACT: The yeast Brettanomyces was isolated from beer in 1904 and associated with wine thereafter. A sporulating form, Dekkera, was discovered later. Brettanomyces bruxellensis produces high levels of volatile phenol off-flavours in wine. Sulphur dioxide (SO2) is the most widely used chemical preservative in wine. Yeasts have several mechanisms to cope with the SO2, namely Ssu1p, a membrane bound SO2 transporter; sulphite reduction, sulphite oxidation and acetaldehyde production. In unfavourable environmental conditions, certain yeasts can enter a viable-but-non-culturable (VBNC) state which is characterised by reduced metabolic rate, inability to reproduce on solid media and a reduction of cell size. VBNC can be triggered by chemical stress such as high SO2 levels. The objectives of this study were to examine the SO2 tolerance of B. bruxellensis and Saccharomyces cerevisiae, to quantify their rates of SO2 accumulation and efflux, determine the effect of SO2 on their energy metabolism and investigate if B. bruxellensis possesses an orthologue to S. cerevisiae SSU1. In this study, the identity of a number of Brettanomyces/Dekkera strains was confirmed using 5.8S rDNA-ITS RFLP analysis and DNA sequencing. Sporulation assays were used to confirm whether these strains belonged to the Dekkera or Brettanomyces genus. A method to accurately quantify SO2 in laboratory conditions was optimised. Molecular SO2 tolerance was tested by spotting fresh yeast cultures on media with SO2 and/or ethanol. Tolerance to SO2 and/or ethanol showed highly strain dependent results with S. cerevisiae showing the highest tolerance levels while B. bruxellensis tolerated SO2 and ethanol poorly but certain strains grew well with only SO2. The SO2 accumulation and efflux rates of 3 S. cerevisiae strains and 3 B. bruxellensis strains were determined. It was shown that the S. cerevisiae strains followed the same trends as previously found in literature whereas B. bruxellensis strains showed similar trends but displayed highly variable strain-dependent results. B. bruxellensis CB63 and S. cerevisiae VIN13 were investigated for their response to SO2 in two different media, TA and SWM, over a 48-hour and 32-day period respectively. Acetic acid, acetaldehyde, D-glucose, D-fructose (only in SWM) and ethanol (only in TA) were regularly monitored over the time course of each experiment. SO2 had the greatest impact on B. bruxellensis with decreased rates of glucose consumption and ethanol production as well as increased acetic acid. Acetaldehyde peaked shortly after SO2 addition with the subsequent restarting of sugar consumption for certain samples. This suggests that sufficient acetaldehyde was produced to bind free SO2 to reduce SO2 stress. Volatile phenols were quantified for day 32 of the SWM experiment. An increase of 4-ethyl guaiacol was correlated to higher molecular SO2 levels. SO2 negatively affected both yeasts energy metabolism, forcing the yeasts metabolism to adapt to ensure survival. In general, SO2 was shown to have a negative impact on all aspects of a yeasts growth and metabolism and that SO2 tolerance is highly strain dependent and a far more complicated characteristic than currently understood.