Heath–Jarrow–Morton models with jumps
Date
2015-03
Authors
Alfeus, Mesias
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT : The standard-Heath–Jarrow–Morton (HJM) framework is well-known for its application to
pricing and hedging interest rate derivatives. This study implemented the extended HJM
framework introduced by Eberlein and Raible (1999), in which a Brownian motion (BM) is
replaced by a wide class of processes with jumps. In particular, the HJM driven by the generalised
hyperbolic processes was studied. This approach was motivated by empirical evidence
proving that models driven by a Brownian motion have several shortcomings, such as inability
to incorporate jumps and leptokurticity into the price dynamics. Non-homogeneous Lévy
processes and the change of measure techniques necessary for simplification and derivation of
pricing formulae were also investigated. For robustness in numerical valuation, several transform
methods were investigated and compared in terms of speed and accuracy. The models
were calibrated to liquid South African data (ATM) interest rate caps using two methods of
optimisation, namely the simulated annealing and secant-Levenberg–Marquardt methods.
Two numerical valuation approaches had been implemented in this study, the COS method
and the fractional fast Fourier transform (FrFT), and were compared to the existing methods
in the context. Our numerical results showed that these two methods are quite efficient and
very competitive. We have chose the COS method for calibration due to its rapidly speed and
we have suggested a suitable approach for truncating the integration range to address the
problems it has with short-maturity options. Our calibration results provided a nearly perfect
fit, such that it was difficult to decide which model has a better fit to the current market state.
Finally, all the implementations were done in MATLAB and the codes included in appendices.
AFRIKAANSE OPSOMMING : Die standaard-Heath–Jarrow–Morton-raamwerk (kortom die HJM-raamwerk) is daarvoor bekend dat dit op die prysbepaling en verskansing van afgeleide finansiële instrumente vir rentekoerse toegepas kan word. Hierdie studie het die uitgebreide HJM-raamwerk geïmplementeer wat deur Eberlein en Raible (1999) bekendgestel is en waarin ’n Brown-beweging deur ’n breë klas prosesse met spronge vervang word. In die besonder is die HJM wat deur veralgemeende hiperboliese prosesse gedryf word ondersoek. Hierdie benadering is gemotiveer deur empiriese bewyse dat modelle wat deur ’n Brown-beweging gedryf word verskeie tekortkominge het, soos die onvermoë om spronge en leptokurtose in prysdinamika te inkorporeer. Nie-homogene Lévy-prosesse en die maatveranderingstegnieke wat vir die vereenvoudiging en afleiding van prysbepalingsformules nodig is, is ook ondersoek. Vir robuustheid in numeriese waardasie is verskeie transformmetodes ondersoek en ten opsigte van spoed en akkuraatheid vergelyk. Die modelle is vir likiede Suid-Afrikaanse data vir boperke van rentekoerse sonder intrinsieke waarde gekalibreer deur twee optimiseringsmetodes te gebruik, naamlik die gesimuleerde uitgloeimetode en die sekans-Levenberg–Marquardt-metode. Twee benaderings tot numeriese waardasie is in hierdie studie gebruik, naamlik die kosinusmetode en die fraksionele vinnige Fourier-transform, en met bestaande metodes in die konteks vergelyk. Die numeriese resultate het getoon dat hierdie twee metodes redelik doeltreffend en uiters mededingend is. Ons het op grond van die motiveringspoed van die kosinus-metode daardie metode vir kalibrering gekies en ’n geskikte benadering tot die trunkering van die integrasiereeks voorgestel ten einde die probleem ten opsigte van opsies met kort uitkeringstermyne op te los. Die kalibreringsresultate het ’n byna perfekte passing gelewer, sodat dit moeilik was om te besluit watter model die huidige marksituasie die beste pas. Ten slotte is alle implementerings in MATLAB gedoen en die kodes in bylaes ingesluit.
AFRIKAANSE OPSOMMING : Die standaard-Heath–Jarrow–Morton-raamwerk (kortom die HJM-raamwerk) is daarvoor bekend dat dit op die prysbepaling en verskansing van afgeleide finansiële instrumente vir rentekoerse toegepas kan word. Hierdie studie het die uitgebreide HJM-raamwerk geïmplementeer wat deur Eberlein en Raible (1999) bekendgestel is en waarin ’n Brown-beweging deur ’n breë klas prosesse met spronge vervang word. In die besonder is die HJM wat deur veralgemeende hiperboliese prosesse gedryf word ondersoek. Hierdie benadering is gemotiveer deur empiriese bewyse dat modelle wat deur ’n Brown-beweging gedryf word verskeie tekortkominge het, soos die onvermoë om spronge en leptokurtose in prysdinamika te inkorporeer. Nie-homogene Lévy-prosesse en die maatveranderingstegnieke wat vir die vereenvoudiging en afleiding van prysbepalingsformules nodig is, is ook ondersoek. Vir robuustheid in numeriese waardasie is verskeie transformmetodes ondersoek en ten opsigte van spoed en akkuraatheid vergelyk. Die modelle is vir likiede Suid-Afrikaanse data vir boperke van rentekoerse sonder intrinsieke waarde gekalibreer deur twee optimiseringsmetodes te gebruik, naamlik die gesimuleerde uitgloeimetode en die sekans-Levenberg–Marquardt-metode. Twee benaderings tot numeriese waardasie is in hierdie studie gebruik, naamlik die kosinusmetode en die fraksionele vinnige Fourier-transform, en met bestaande metodes in die konteks vergelyk. Die numeriese resultate het getoon dat hierdie twee metodes redelik doeltreffend en uiters mededingend is. Ons het op grond van die motiveringspoed van die kosinus-metode daardie metode vir kalibrering gekies en ’n geskikte benadering tot die trunkering van die integrasiereeks voorgestel ten einde die probleem ten opsigte van opsies met kort uitkeringstermyne op te los. Die kalibreringsresultate het ’n byna perfekte passing gelewer, sodat dit moeilik was om te besluit watter model die huidige marksituasie die beste pas. Ten slotte is alle implementerings in MATLAB gedoen en die kodes in bylaes ingesluit.
Description
Thesis (MSc)--Stellenbosch University, 2015.
Keywords
Price dynamics, Heath–Jarrow–Morton (HJM) framework, Interest rate derivative, UCTD, Interest rates -- Mathematical models, Finance -- Mathematical models