Browsing by Author "Zengeya, T. A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFood web properties vary with climate and land use in South African streams(Wiley Online, 2020) Jackson, M. C.; Fourie, H. E.; Dalu, T.; Woodford, D. J.; Wasserman, R. J.; Zengeya, T. A.; Ellender, B. R.; Kimberg, P. K.; Jordaan, M. S.; Chimimba, C. T.; Weyl, O. L. F.Land use intensification and climate change are two prominent drivers of variation in biological communities. However, we know very little about how these two potential environmental stressors interact. Here we use a stable isotope approach to quantify how animal communities respond to urban and agriculture land use, and to latitudinal variation in climate (rainfall and temperature), in 29 streams across South Africa. Community structure was shaped by both land use and climatic factors. The taxonomic diversity of invertebrates was best explained by an independent negative effect of urbanization, while abundance declined in summer. However, we could not use our variables to predict fish diversity (suggesting that other factors may be more important). Both trophic functional diversity (quantifed usingisotopic richness) and food chain length declined with increasing temperature. Functional redundancy (quantifed usingisotopic uniqueness) in the invertebrate community was high in wet areas, and a synergistic interaction with urbanization caused the lowest values in dry urban regions. There was an additive effect of agriculture and rainfall on abundance-weighted vertebrate functional diversity (quantified usingisotopic dispersion), with the former causing a decline in dispersion, with this partially compensated for by high rainfall. In most cases, we found that a single dominant driver (either climate or land use) explained variation between streams. We only found two incidences of combined effects improving the model, one of which was amplified (i.e. the drivers combined to cause an effect larger than the sum of their independent effects), indicating that management should first focus on mitigating the dominant stressor in stream ecosystems for successful restoration efforts. Overall, our study indicates subtle food web responses to multiple drivers of change, only identified by using functional isotope metrics-these are a useful tool for a whole-systems biology understanding of global change. A freePlain Language Summarycan be found within the Supporting Information of this article.
- ItemIs invasion science moving towards agreed standards? The influence of selected frameworks(Pensoft, 2020-10-15) Wilson, John R. U.; Datta, Arunava; Hirsch, Heidi; Keet, Jan-Hendrik; Mbobo, Tumeka; Nkuna, Khensani V.; Nsikani, Mlungele M.; Pysek, Petr; Richardson, David M.; Zengeya, T. A.; Kumschick, SabrinaENGLISH ABSTRACT: The need to understand and manage biological invasions has driven the development of frameworks to circumscribe, classify, and elucidate aspects of the phenomenon. But how influential have these frameworks really been? To test this, we evaluated the impact of a pathway classification framework, a framework focussing on the introduction-naturalisation-invasion continuum, and two papers that outline an impact classification framework. We analysed how these framework papers are cited and by whom, conducted a survey to determine why people have cited the frameworks, and explored the degree to which the frameworks are implemented. The four papers outlining these frameworks are amongst the most-cited in their respective journals, are highly regarded in the field, and are already seen as citation classics (although citations are overwhelmingly within the field of invasion science). The number of citations to the frameworks has increased over time, and, while a significant proportion of these are self-citations (20–40%), this rate is decreasing. The frameworks were cited by studies conducted and authored by researchers from across the world. However, relative to a previous citation analysis of invasion science as a whole, the frameworks are particularly used in Europe and South Africa and less so in North America. There is an increasing number of examples of uptake into invasion policy and management (e.g., the pathway classification framework has been adapted and adopted into EU legislation and CBD targets, and the impact classification framework has been adopted by the IUCN). However, we found that few of the citing papers (6–8%) specifically implemented or interrogated the frameworks; roughly half of all citations might be viewed as frivolous (“citation fluff”); there were several clear cases of erroneous citation; and some survey respondents felt that they have not been rigorously tested yet. Although our analyses suggest that invasion science is moving towards a more systematic and standardised approach to recording invasions and their impacts, it appears that the proposed standards are still not applied consistently. For this to be achieved, we argue that frameworks in invasion science need to be revised or adapted to particular contexts in response to the needs and experiences of users (e.g., so they are relevant to pathologists, plant ecologists, and practitioners), the standards should be easier to apply in practice (e.g., through the development of guidelines for management), and there should be incentives for their usage (e.g., recognition for completing an EICAT assessment).