Browsing by Author "Walljee, Raabia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemThe Levy-LIBOR model with default risk(Stellenbosch : Stellenbosch University, 2015-03) Walljee, Raabia; Becker, Ronald I.; Stellenbosch University. Faculty of Science. Department of Mathematical Sciences.ENGLISH ABSTRACT : In recent years, the use of Lévy processes as a modelling tool has come to be viewed more favourably than the use of the classical Brownian motion setup. The reason for this is that these processes provide more flexibility and also capture more of the ’real world’ dynamics of the model. Hence the use of Lévy processes for financial modelling is a motivating factor behind this research presentation. As a starting point a framework for the LIBOR market model with dynamics driven by a Lévy process instead of the classical Brownian motion setup is presented. When modelling LIBOR rates the use of a more realistic driving process is important since these rates are the most realistic interest rates used in the market of financial trading on a daily basis. Since the financial crisis there has been an increasing demand and need for efficient modelling and management of risk within the market. This has further led to the motivation of the use of Lévy based models for the modelling of credit risky financial instruments. The motivation stems from the basic properties of stationary and independent increments of Lévy processes. With these properties, the model is able to better account for any unexpected behaviour within the market, usually referred to as "jumps". Taking both of these factors into account, there is much motivation for the construction of a model driven by Lévy processes which is able to model credit risk and credit risky instruments. The model for LIBOR rates driven by these processes was first introduced by Eberlein and Özkan (2005) and is known as the Lévy-LIBOR model. In order to account for the credit risk in the market, the Lévy-LIBOR model with default risk was constructed. This was initially done by Kluge (2005) and then formally introduced in the paper by Eberlein et al. (2006). This thesis aims to present the theoretical construction of the model as done in the above mentioned references. The construction includes the consideration of recovery rates associated to the default event as well as a pricing formula for some popular credit derivatives.