Browsing by Author "Muller, Christo J. F."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemAdipose tissue as a possible therapeutic target for polyphenols : a case for Cyclopia extracts as anti-obesity nutraceuticals(Elsevier, 2019) Jack, Babalwa U.; Malherbe, Christiaan J.; Mamushi, Mokadi Peggy; Muller, Christo J. F.; Joubert, Elizabeth; Louwa, Johan; Pheiffer, CarmenENGLISH ABSTRACT: Obesity is a significant contributor to increased morbidity and premature mortality due to increasing the risk of many chronic metabolic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Lifestyle modifications such as energy restriction and increased physical activity are highly effective first-line treatment strategies used in the management of obesity. However, adherence to these behavioral changes is poor, with an increased reliance on synthetic drugs, which unfortunately are plagued by adverse effects. The identification of new and safer anti-obesity agents is thus of significant interest. In recent years, plants and their phenolic constituents have attracted increased attention due to their health-promoting properties. Amongst these, Cyclopia, an endemic South African plant commonly consumed as a herbal tea (honeybush), has been shown to possess modulating properties against oxidative stress, hyperglycemia, and obesity. Likewise, several studies have reported that some of the major phenolic compounds present in Cyclopia spp. exhibit anti-obesity effects, particularly by targeting adipose tissue. These phenolic compounds belong to the xanthone, flavonoid and benzophenone classes. The aim of this review is to assess the potential of Cyclopia extracts as an anti-obesity nutraceutical as underpinned by in vitro and in vivo studies and the underlying cellular mechanisms and biological pathways regulated by their phenolic compounds.
- ItemAspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression(MDPI, 2017) Dludla, Phiwayinkosi V.; Muller, Christo J. F.; Joubert, Elizabeth; Louw, Johan; Essop, M. Faadiel; Gabuza, Kwazi B.; Ghoor, Samira; Huisamen, Barbara; Johnson, RabiaAspalathin (ASP) can protect H9c2 cardiomyocytes against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress, and apoptosis. The protective mechanism of ASP remains unknown. However, as one of possible, it is well known that phytochemical flavonoids reduce oxidative stress via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation resulting in up-regulation of antioxidant genes and enzymes. Therefore, we hypothesized that ASP protects the myocardium against HG- and hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression in H9c2 cardiomyocytes and diabetic (db/db) mice, respectively. Using an oxidative stress RT2 Profiler PCR array, ASP at a dose of 1 µM was demonstrated to protect H9c2 cardiomyocytes against HG-induced oxidative stress, but silencing of Nrf2 abolished this protective response of ASP and exacerbated cardiomyocyte apoptosis. Db/db mice and their non-diabetic (db/+) littermate controls were subsequently treated daily for six weeks with either a low (13 mg/kg) or high (130 mg/kg) ASP dose. Compared to nondiabetic mice the db/db mice presented increased cardiac remodeling and enlarged left ventricular wall that occurred concomitant to enhanced oxidative stress. Daily treatment of mice with ASP at a dose of 130 mg/kg for six weeks was more effective at reversing complications than both a low dose ASP or metformin, eliciting enhanced expression of Nrf2 and its downstream antioxidant genes. These results indicate that ASP maintains cellular homeostasis and protects the myocardium against hyperglycemia-induced oxidative stress through activation of Nrf2 and its downstream target genes.
- ItemAspalathin, a natural product with the potential to reverse hepatic insulin resistance by improving energy metabolism and mitochondrial respiration(Public Library of Science, 2019) Mazibuko-Mbeje, Sithandiwe E.; Dludla, Phiwayinkosi V.; Johnson, Rabia; Joubert, Elizabeth; Louw, Johan; Ziqubu, Khanyisani; Tiano, Luca; Silvestri, Sonia; Orlando, Patrick; Opoku, Andy R.; Muller, Christo J. F.ENGLISH ABSTRACT: Aspalathin is a rooibos flavonoid with established blood glucose lowering properties, however, its efficacy to moderate complications associated with hepatic insulin resistance is unknown. To study such effects, C3A liver cells exposed to palmitate were used as a model of hepatic insulin resistance. These hepatocytes displayed impaired substrate metabolism, including reduced glucose transport and free fatty acid uptake. These defects included impaired insulin signaling, evident through reduced phosphatidylinositol-4,5-bisphosphate 3-kinase/ protein kinase B (PI3K/AKT) protein expression, and mitochondrial dysfunction, depicted by a lower mitochondrial respiration rate. Aspalathin was able to ameliorate these defects by correcting altered substrate metabolism, improving insulin signaling and mitochondrial bioenergetics. Activation of 5´-adenosine monophosphate-activated protein kinase (AMPK) may be a plausible mechanism by which aspalathin increases hepatic energy expenditure. Overall, these results encourage further studies assessing the potential use of aspalathin as a nutraceutical to improve hepatocellular energy expenditure, and reverse metabolic disease-associated complications.
- ItemAspalathin-rich green rooibos extract lowers LDL-cholesterol and oxidative status in high-fat diet-induced diabetic vervet monkeys(2019-05-02) Orlando, Patrick; Chellan, Nireshni; Louw, Johan; Tiano, Luca; Cirilli, Ilenia; Dludla, Phiwayinkosi; Joubert, Elizabeth; Muller, Christo J. F.Type 2 diabetic patients possess a two to four-fold-increased risk for cardiovascular diseases (CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract (Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve (AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics, while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels. No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally, the direct correlation between the amount of oxidized LDL and total LDL concentration, and the inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys highlighted the potential cardiovascular protective role of green rooibos extract. Taken together, these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.
- ItemCoenzyme Q10 supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome : a meta-analysis of randomized controlled trials(MDPI, 2020-05-04) Dludla, Phiwayinkosi V.; Orlando, Patrick; Silvestri, Sonia; Marcheggiani, Fabio; Cirilli, Ilenia; Nyambuya, Tawanda M.; Mxinwa, Vuyolwethu; Mokgalaboni, Kabelo; Nkambule, Bongani B.; Johnson, Rabia; Mazibuko-Mbeje, Sithandiwe E.; Muller, Christo J. F.; Louw, Johan; Tiano, LucaEvidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: −0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: −0.31 [95% CI: −0.54, −0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.
- ItemEffect of human immunodeficiency virus on the brain: a review(American Association for Anatomy, 2020-11) Cilliers, Karen; Muller, Christo J. F.Thirty million people are infected with human immunodeficiency virus (HIV) worldwide, and HIV-associated neurocognitive disorder (HAND) is one of the most common comorbidities of HIV. However, the effect of HIV on the brain has not been fully investigated. This article aimed to review the changes to the brain due to HIV in terms of atrophy, diffusion changes, and hyperintensities. Studies have observed significant atrophy in subcortical gray matter, as well as in cortical white and gray matter. Moreover, the ventricles enlarge, and the sulci widen. Although HIV causes changes to the white and gray matter of the brain, few diffusion tensor imaging studies have investigated the changes to gray matter integrity. White and gray matter hyperintensities have frequently been observed in HIV-positive individuals, with the subcortical gray matter (caudate nucleus and putamen) and periventricular white matter frequently affected. In conclusion, subcortical gray matter is the first brain region to be affected and is affected most severely. Additionally, this review highlights the gaps in the literature, since the effect of HIV on the brain is not fully known. Future studies should continue to investigate the effect of HIV on the brain in different stages of the disease, and alternate therapies should be developed since highly active antiretroviral therapy is currently ineffective at treating HAND.
- ItemHyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside(BMC (part of Springer Nature), 2017) Dludla, Phiwayinkosi V.; Joubert, Elizabeth; Muller, Christo J. F.; Louw, Johan; Johnson, RabiaDiabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
- ItemAn in vitro study on the combination effect of Metformin and N-Acetyl Cysteine against hyperglycaemia-induced cardiac damage(MDPI, 2019-11-21) Johnson, Rabia; Sangweni, Nonhlakanipho F.; Mabhida, Sihle E.; Dludla, Phiwayinkosi V.; Mabasa, Lawrence; Riedel, Sylvia; Chapman, Charna; Mosa, Rebamang A.; Kappo, Abidemi P.; Louw, Johan; Muller, Christo J. F.ENGLISH ABSTRACT: Chronic hyperglycaemia is a major risk factor for diabetes-induced cardiovascular dysfunction. In a hyperglycaemic state, excess production of reactive oxygen species (ROS), coupled with decreased levels of glutathione, contribute to increased lipid peroxidation and subsequent myocardial apoptosis. N-acetylcysteine (NAC) is a thiol-containing antioxidant known to protect against hyperglycaemic-induced oxidative stress by promoting the production of glutathione. While the role of NAC against oxidative stress-related cardiac dysfunction has been documented, to date data is lacking on its beneficial effect when used with glucose lowering therapies, such as metformin (MET). Thus, the aim of the study was to better understand the cardioprotective effect of NAC plus MET against hyperglycaemia-induced cardiac damage in an H9c2 cardiomyoblast model. H9c2 cardiomyoblasts were exposed to chronic high glucose concentrations for 24 h. Thereafter, cells were treated with MET, NAC or a combination of MET and NAC for an additional 24 h. The combination treatment mitigated high glucose-induced oxidative stress by improving metabolic activity i.e. ATP activity, glucose uptake (GU) and reducing lipid accumulation. The combination treatment was as effective as MET in diminishing oxidative stress, lipid peroxidation and apoptosis. We observed that the combination treatment prevented hyperglycaemic-induced cardiac damage by increasing GLUT4 expression and mitigating lipid accumulation via phosphorylation of both AMPK and AKT, while decreasing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), as well as protein kinase C (PKC), a known activator of insulin receptor substrate-1 (IRS-1), via phosphorylation at Ser307. On this basis, the current results support the notion that the combination of NAC and MET can shield the diabetic heart against impaired glucose utilization and therefore its long-term protective effect warrants further investigation.
- ItemN-Acetyl cysteine ameliorates hyperglycemia-induced cardiomyocyte toxicity by improving mitochondrial energetics and enhancing endogenous Coenzyme Q9/10 levels(Elsevier, 2019) Dludla, Phiwayinkosi V.; Orlando, Patrick; Silvestri, Sonia; Mazibuko-Mbeje, Sithandiwe E.; Johnson, Rabia; Marcheggiani, Fabio; Cirilli, Ilenia; Muller, Christo J. F.; Louwa, Johan; Obonye, Nnini; Nyawo, Thembeka; Nkambule, Bongani B.; Tiano, LucaENGLISH ABSTRACT: The diabetic heart has been linked with reduced endogenous levels of coenzyme Q9/10 (CoQ), an important antioxidant and component of the electron transport chain. Although CoQ has displayed cardioprotective potential in experimental models of diabetes, the impact of N-acetyl cysteine (NAC) on mitochondrial energetics and endogenous levels of CoQ remains to be clarified. To explore these effects, high glucose-exposed H9c2 cardiomyocytes were used as an experimental model of hyperglycemia-induced cardiac injury. The results showed that high glucose exposure caused an increased production of reactive oxygen species (ROS), which was associated with impaired mitochondrial energetics as confirmed by a reduction of maximal respiration rate and depleted ATP levels. These detrimental effects were consistent with significantly reduced endogenous CoQ levels and accelerated cell toxicity. Although metformin demonstrated similar effects on mitochondrial energetics and cell viability, NAC demonstrated a more pronounced effect in ameliorating cytosolic and mitochondrial ROS production. Interestingly, the ameliorative effects of NAC against hyperglycemia-induced injury were linked with its capability to enhance endogenous CoQ levels. Although such data are to be confirmed in other models, especially in vivo studies, the overall findings provide additional evidence on the therapeutic mechanisms by which NAC protects against diabetes-induced cardiac injury.
- ItemTrace element concentration changes in brain tumors : a review(American Association for Anatomy, 2020-05) Cilliers, Karen; Muller, Christo J. F.; Page, Benedict J.Trace elements have been implicated in cancer, since the levels differ between cancerous and noncancerous tissue, different cancer types, and different malignancy grades. However, few studies have been conducted on trace element concentrations in brain tumors. Thus, this study aims to review the available literature on trace element changes related to brain tumors, and to identify gaps in the literature. A literature search was done on Google Scholar and PubMed from their start date to January 2018, using terms related to trace element concentration and brain tumors. All brain tumor types were included, and articles could be published in any year. From this search, only 11 articles on this topic could be found. Tumors had significantly higher concentrations of arsenic, thorium, lanthanum, lutetium, cerium, and gadolinium compared to control brain samples. Compared to adjacent tissue, tumor tissue indicated increased magnesium, decreased copper, and contradicting results for zinc. Furthermore, the higher the malignancy grade, the lower the calcium, cadmium, iron, phosphorus and sulfur concentration, and the higher the mercury, manganese, lead, and zinc concentrations. In conclusion, altered trace element levels differ amongst different tumor types, as well as malignancy grades. Consequently, it is impossible to compare data from these studies, and available data are still considerably inconclusive. Ideally, future studies should have a sufficient samples size, compare different tumor types, and compare tumors with adjacent healthy tissue as well as with samples from unaffected matched brains. Anat Rec, 303:1293-1299, 2020. © 2019 American Association for Anatomy.
- ItemThe transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in Vitro H9c2 model(MDPI, 2017) Johnson, Rabia; Dludla, Phiwayinkosi V.; Muller, Christo J. F.; Huisamen, Barbara; Essop, M. Faadiel; Louw, JohanAspalathin, a C-glucosyl dihydrochalcone, has previously been shown to protect cardiomyocytes against hyperglycemia-induced shifts in substrate preference and subsequent apoptosis. However, the precise gene regulatory network remains to be elucidated. To unravel the mechanism and provide insight into this supposition, the direct effect of aspalathin in an isolated cell-based system, without the influence of any variables, was tested using an H9c2 cardiomyocyte model. Cardiomyocytes were exposed to high glucose (33 mM) for 48 h before post-treatment with or without aspalathin. Thereafter, RNA was extracted and RT2 PCR Profiler Arrays were used to profile the expression of 336 genes. Results showed that, 57 genes were differentially regulated in the high glucose or high glucose and aspalathin treated groups. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis revealed lipid metabolism and molecular transport as the biological processes altered after high glucose treatment, followed by inflammation and apoptosis. Aspalathin was able to modulate key regulators associated with lipid metabolism (Adipoq, Apob, CD36, Cpt1, Pparγ, Srebf1/2, Scd1 and Vldlr), insulin resistance (Igf1, Akt1, Pde3 and Map2k1), inflammation (Il3, Il6, Jak2, Lepr, Socs3, and Tnf13) and apoptosis (Bcl2 and Chuk). Collectively, our results suggest that aspalathin could reverse metabolic abnormalities by activating Adipoq while modulating the expression of Pparγ and Srebf1/2, decreasing inflammation via Il6/Jak2 pathway, which together with an observed increased expression of Bcl2 prevents myocardium apoptosis.