Browsing by Author "Diaz-Faes, Adrian A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBeyond funding : acknowledgement patterns in biomedical, natural and social sciences(Public Library of Science, 2017) Paul-Hus, Adele; Diaz-Faes, Adrian A.; Sainte-Marie, Maxime; Desrochers, Nadine; Costas, Rodrigo; Lariviere, VincentFor the past 50 years, acknowledgments have been studied as important paratextual traces of research practices, collaboration, and infrastructure in science. Since 2008, funding acknowledgments have been indexed by Web of Science, supporting large-scale analyses of research funding. Applying advanced linguistic methods as well as Correspondence Analysis to more than one million acknowledgments from research articles and reviews published in 2015, this paper aims to go beyond funding disclosure and study the main types of contributions found in acknowledgments on a large scale and through disciplinary comparisons. Our analysis shows that technical support is more frequently acknowledged by scholars in Chemistry, Physics and Engineering. Earth and Space, Professional Fields, and Social Sciences are more likely to acknowledge contributions from colleagues, editors, and reviewers, while Biology acknowledgments put more emphasis on logistics and fieldworkrelated tasks. Conflicts of interest disclosures (or lack of thereof) are more frequently found in acknowledgments from Clinical Medicine, Health and, to a lesser extent, Psychology. These results demonstrate that acknowledgment practices truly do vary across disciplines and that this can lead to important further research beyond the sole interest in funding.
- ItemTowards a second generation of social media metrics : characterizing Twitter communities of attention around science(Public Library of Science, 2019) Diaz-Faes, Adrian A.; Bowman, Timothy D.; Costas, Rodrigo'Social media metrics’ are bursting into science studies as emerging new measures of impact related to scholarly activities. However, their meaning and scope as scholarly metrics is still far from being grasped. This research seeks to shift focus from the consideration of social media metrics around science as mere indicators confined to the analysis of the use and visibility of publications on social media to their consideration as metrics of interaction and circulation of scientific knowledge across different communities of attention, and particularly as metrics that can also be used to characterize these communities. Although recent research efforts have proposed tentative typologies of social media users, no study has empirically examined the full range of Twitter user’s behavior within Twitter and disclosed the latent dimensions in which activity on Twitter around science can be classified. To do so, we draw on the overall activity of social media users on Twitter interacting with research objects collected from the Altmetic.com database. Data from over 1.3 million unique users, accounting for over 14 million tweets to scientific publications, is analyzed. Based on an exploratory and confirmatory factor analysis, four latent dimensions are identified: ‘Science Engagement’, ‘Social Media Capital’, ‘Social Media Activity’ and ‘Science Focus’. Evidence on the predominant type of users by each of the four dimensions is provided by means of VOSviewer term maps of Twitter profile descriptions. This research breaks new ground for the systematic analysis and characterization of social media users’ activity around science.